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Table 3.1: Some admittance and impedance operators.

1.13 RC circuits: V and | versus time

When dealing with ac circuits (or, in gen-
eral, any circuits that have changing volt-
ages and currents), there are two possible
approaches. You can talk about ¥ and
I versus time, or you can talk about
amplitude versus signal frequency, Both
approaches have their merits, and you
find yourself switching back and forth ac-
cording to which description is most con-
venient in each situation. We will begin
our study of ac circuits in the time domain,
Beginning with Section 1.18, we will tackle
the frequency domain.

What are some of the features of circuits
with capacitors? To answer this question,
let’s begin with the simple RC circuit (Fig,
1.29). Application of the capacitor rules
gives o o

This is a differential equation, and its
solution is

V = Ae~t/RC

CAPACITORS AND AC CIRCUITS
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So a charged capacitor placed "across a
resistor will discharge as in Figure [.30.

Figure 1.29

I7%

t=ARC

Figure 1.30. RC discharge waveform.

Time constant

The product R is called the time constant
of the circuit. For R in ohms and C in
farads, the product RC is in seconds. A
microfarad across 1.0k has a time constant
of lms; if the capacitor is initially charged
to 1.0 volt, the initial current is 1.0mA.

A

£ v
—_ battery,
= voltage = v, :]: c

Figure 1,31

Figure 1.31 shows a slightly different
cirenit, At time ¢ = 0, someone connects
the battery. The equation for the circuit is
then
=¥ _V-V

dt R

with the solution
V =V, + Ae"V/EC
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{(Please don’t worry if vou can't follow
the mathematics. What we are doing
is getting some important results, which
you should remember. Later we will use
the results often, with no further need
for the mathematics used to derive them.)
The constant A is determined by initial
conditions (Fig. 1.32): V = 0 at £ = 0;
therefore, A = —V}, and

V = V(1 — e t/EC)

v
Vi
63%
)
0 t=RC ¢
Figure 1.32

AA fﬂ—\uf,

e s B
. ,

Figure 1,33, OQutput (top waveform) across
a capacitor, when driven by square waves
through a resistor.

{tower frequency)

Decay fo equillbrium

Eventually (when t 3» RC), V reaches V;.
(Presenting the “5RC rule of thumb™ a
capacitor charges or decays to within [%
of its final value in 5 time constants.) If
we then change ¥ to some other value
(say, 0, V will decay toward that new
value with an exponential e~ %8¢, Tor
example, a square-wave input for ¥
will produce the output shown in Figure
1.33,

EXERGISE .13
Show that the rise time (the time required to go

from 10% to 90% of its final value) cf this signal -

Is 2.2RC.

You might ask the obvious next ques-
tion: What about V(#) for arbitrary ¥;{t)?
The solution involves an inhomogenecus
differential equation and can be solved
by standard methods (which are, however,
beyond the scope of this book), You would
find

i
V) = o [ Vilr)e R

That is, the R’ circuit averages past
history at the input with a weighting factor

=D/ RC

In practice, you seldom ask this question.
Instead, you deal in the frequency domain

.and ask how much of each frequency com-

ponent present in the input gets through.
We will get to this imporfant topic soon
(Section 1.18). Before we do, though, there
are a few other interesting circuits we can
analyze simply with this time-domain
appreoach.

||l’—0
1
!II—O <

Figure 1.34

Simplification by Thévenin equivalents

We could go ahead and analyze more
complicated circuits by similar methods,
writing down the differential equations
and trying to find solutions. For most
purposes it simply isn’t worth it. This is as
complicated an EC circuit as we will need.
Many other circuits can be reduced to it
(e.z., Fig. 1.34). By just using the Thévenin
equivalent of the voltage divider formed
by R; and Ra, you can find the output

CAPACITORS AND AC CIRCUITS
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V(t) produced by a step input for
Ve.

EXERCISE 1.14
Ry = Ry =10k, and € = 0.14F in the circuit
shown In Figure 1.34. Find V'{t) and sketch it.

CMOS buffers
S AN

18k B I

1

1000pF

A —input ——
B-AC / N
€ — output

10us 10us

Figure 1.35. Producing a delayed digital
waveform with the help of an RC.

- Example: time-deiay circuft =~

We have already mentioned logic levels,
the voltages that digital circuits live on.
Figure 1.35 shows an application of ca-

" pacitors to produce a delayed pulse. The

triangular symbols are “CMOS buffers.”
They give 2 HIGH output if the input is
HIGH (more than one-haif the dc power-
supply voltage used to power them), and
vice versa. The first buffer provides a rep-
lica of the input signal, but with low source
resistance, and prevents input loading by
the RC (recall our earlier discussion of ¢ir-
cuit loading in Section 1.05). The RC out-
put has the characteristic decays and cau-
ses the output buffer to switch 10us after
the input transitions (an RC reaches 50%
output in 0.7R€). In an actual application
you would have to consider the effect of
the buffer input threshoid deviating from

one-half the supply voltage, which would
alter the delay and change the output puise
width. Such a circuit is sometimes used to
delay a pulse so that something else can
happen first, In designing circuits you try
not to rely on tricks ke this, but Lhey Te
occasionally handy.

1.14 Differentiators

Lock at the circuit in Figure 1.36. The

voltage across €' is Vi, — V, so
d V
I_CE(Wn_V)‘""E

If we choose R and C small enough so that
dV/dt <« dVin/dt, then

GdVin 2 v

dt R
or

d
= ridi
RO S Vin(t)

That is, we get an output proportional
to the rate of change of the input wave-
form.

Vit)

c
et | } o
Viale) ‘% vie)
i "1
Figure 1.36

To keep dV/dt <« dVi,/dt, we make
the product RC' small, taking care not to
“load” the input by making R too small
(at the transition the change in voltage
across the capacitor is zero, so R is the load
seen by the input). We will have a better
criterion for this when we look at things
in the frequency domain. If you drive this
circuit with a square wave, the output will
be as shown in Figure 1.37.
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bty
-

Figure 1.37. Output waveform (top) from
differentiator driven by a square wave.

A [ 100pF ) c
10k

A—input .__I—l—

time constant

/:“#5
pone N7

b’
£ — eutput v——-ﬂ——m

Figure 1.38. Leading-edge detector.

Differentiators are handy for detecting
leading edges and trailing edges in pulse
signals, and in digital circuitry you some-
times see things like those depicted in Fig-
ure 1.38. The RC differentiator generates
spikes at the transitions of the input signal,
and the output buffer converts the spikes
to short square-topped pulses. In practice,
the negative spike will be small because
of a diode (2 handy device discussed in
Section 1.25) built into the buffer.

Unintentional capacitive coupling

Differentiators sometimes c¢rop up unex-
pectedly, in situations where they’re not
welcome. You may see signals like those
shown in Figure 1.39. The first case is
caused by a square wave somewhere in the
circuit coupling capacitively to the signat
line you're looking at; that might indicate

a missing resistor termination on your sig-
nal line. If not, you must either reduce the
source resistance of the signal line or find
a way to reduce capacitive coupling from
the offending square wave. The second
case is typical of what you might see when
you look at a square wave, but have a bro-
ken connection somewhere, usually at the
scope probe. The very small capacitance
of the broken connection combines with
the scope input resistance to form a
differentiator. Knowing that you've got a
differentiated “something” can help you
find the trouble and eliminate it.

W

Figure 1,39

A o

Vie —Lc 1%

1 I
Figure 1,40

115 Integrators

Take a look at the circuit in Figure 1.40.
The voltage across R is Vi, — V, so

d¥  Va-V
I=C E- TR
If we manage to keep V' <« Vi, by keeping
the product R(C large, then

av. _ Via

dt R
or

t
Vit)= ﬁ%./ Vin(t) df + constant

We have a circuit that performs the inte-
gral over time of an input signall You can

P et

p

P
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see how the approximation works for a
square-wave input: V'{(f} is then the expo-
nential charging curve we saw earlier (Fig.
1.41). The first part of the exponential is
a ramp, the integral of a constant; as we
increase the time constant RC, we pick
off a smaller part of the exponential, i.c., a
better approximation to a perfect ramp.

- 10% error
at about
10% V),

straight

Figure 1.41

Note that the condition V' < Vi, is just
the same as saying that I is proportionat
t0 Vie. If we had as input a current I(t),
rather than a voitage, we would have an
“exact integrator. - A large voltage across
4 large resistance approximates a current
source and, in fact, is freguently used as
one.

Later, when we get to operational ampli-
fiers and feedback, we will be able to build
integrators without the restriction Vo <

:, Vin. They will work over large frequency

and voltage ranges with negligible error.

The integrator is used extensively in an-
alog computation. it is a useful subcircuit *

that finds application in control systems,
feedback, analog/digital conversion, and
waveform generation.

Ramp generalors

At this point it is easy to understand
how a ramp generator works. This nice
circuit is extremely useful, for example

in timing circuits, waveform and function
generators, oscilloscope sweep circuits,
and analog/digital conversion circuitry.
The circuit uses a constant current to
charge a capacitor (Fig, 1.42). From the
capacitor equation I = C{dV/dt), vou get
V{t) = (I/C)t. The output waveform is
as shown in Figure 1.43. The ramp stops
when the current source “runs out of volt-
age,” i.e., reaches the limit of its compli-
ance. The curve for a simple RC, with the
resistor tied to a voltage source equal to
the compliance of the current source, and
with K chosen so that the current at zero

ocutput voltage is the same as that of the .

current source, is also drawn for compa-
rison. (Real current sources generally
have output compliances limited by the
power-supply voltages used in making
them, so the comparison is realistic.)
In the next chapter, which deals with
transistors, we will design some current
sources, with some refinements to follow
in the chapters on operational ampli-
fiers {op-amps) and field-effect transistors
(FETs). Exciting things to ook forward
to!

O output

Figure 1.42. A constant current source charging
a capacitor generates a ramp voltage waveform,

Figure 1,43

EXERGISE 1.15

Acurrentof 1mA charges a 1uF capacitor. How
long does it take the ramp to reach 10 volts?
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Figure 1.44. Inductor.

INDUCTORS AND TRANSFORMERS

1.16 Inductors

If you understand capacitors, you won't
have any trouble with inductors (Fig. 1.44).
They're closely related to capacitors; the
rate of current change in an inductor
depends on the voltage applied across it,
whereas the rate of voliage change in a ca-
pacitor depends on the current through it.
The defining equation for an inductor is

dar
=fr—
v dt

where L is called the inductance and is
measured in henrys (or mI, ptl, ete.). Pat-
ting a voltage across an inductor causes the
current to rise as a ramp (for a capacitor,
supplying a constant current causes the
voltage to rise as a ramp); 1 volt across
1 henry produces a current that increases
at 1 amp per second. :

—_—YTY N

As with capacitive current, inductive
current is not simply proportional to volt-
age. Furthermore, unlike the situation in
a resistor, the power associated with in-
ductive current (V' times I) is not turned
inte heat, but is stored as energy in the
inductor’s magnetic field. You get all that
energy back when vou interrupt the induc-
tor’s current, .

The symbol for an inductor looks like
a coil of wire; that’s because, in its
simplest form, that’s all it is. Variations
include coils wound on various core mate-
rials, ihe most popular being iron {or iron
altoys, laminations, or powder) and ferrite,
a black, nonconductive, brijtle magnetic
material. These are all ploys to multiply
the inductance of a given coil by the “per-
meability” of the core material. The core
may be in the shape of a rod, a toroid

(doughnut), or even more bizarre shapes,
such as a “pot core” (which has to be
seen to be understood; the best description
we can think of is a doughnut mold split
horizontally in half, if doughnuts were
made in molds).

Inductors find heavy use in radio-
frequency (RF) circuits, serving as RF
“chokes™ and as parts of tuned circuits (see
Chapter 13). A pair of closely coupled in-
ductors forms the interesting object known

as a transformer, We will talk briefly about

them in the next section.

An inductor is, in a real sense, the
opposite of a capacitor. You will see how
that works out in the next few sections of
this chapter, which deal with the important
subject of impedance.

1.17 Transformers

A transformer is a device consisting of
two closely coupled coils {called primary
and secondary). An ac voltage applied to
the primary appears across the secondary,
with a voltage multiplication proportional
to the turns ratio of the transformer and

a current multiplication inversely propor-

tional to the turns ratio. Power is con-
served, Figure .45 shows the circuit sym-
boi for a laminated-core transformer (the
kind used for 60Hz a¢ power conversion).

B4

Figure 1.45. Transformer.

Transformers are quite efficient {output
power is very nearly-equal to input power);
thus, a step-up transformer gives higher
voltage at lower current. Jumping ahead
for a moment, a transformer of turns ratio
7 increases the impedance by n?. There is

_very little primary current if the secondary

is unicaded.
Transformers serve two important
functions in electronic instruments: They

) INDUCTORS AND TRANSFORMERS
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change the ac line voltage to a useful
{usually lower) value that can be used by
the circuit, and they “isolate” the electron-
ic device from aciual connection to the
power line, because the windings of'a trans-
former are electrically insuiated from each
other. Power transformers (meant for use
from the 110V power line) come in an
enormous variety of secondary voltages
and currents: outputs as low as 1 volt or so
up to several thousand volts, current rat-
ings from a few milliamps to hundreds of
amps. Typical transformers for use in elec-
fronic instruments might have secondary
voltages from 10 to 50 volts, with current
ratings of 0.1 to 5 amps or so.
Transformers for use at aundiofrequen-
cies and radiofrequencies are also avail-
able. At radiofrequencies you sometimes
use tuned transformers, if only a narrow
range of frequencies is present. There is
also an interesting class of transmission-
line transformer that we will discuss briefly
in Section 13.10. In general, transformers
for use ai high frequencies must use spe-
cial core materials or construction to min-
imize core losses, whereas low-frequency

-— .—transformers (e.g., power transformers) are__

burdened instead by large and heavy cores.
The two kinds of transformers are in
general not interchangeable.

IMPEDANCE AND REACTANCE

' Warning: This section is somewhat math-
ematical; you may wish to skip over the
mathematics, but be sure fo pay aftention
to the resulis and graphs.

Circuits with capacitors and inductors
are more complicated than the resistive
circuits we talked about earlier, in that
their behavior depends on frequency: A
“voltage divider” containing a capacitor or
inductor wifl have a frequency-dependent
division ratic. In addition, circuits con-
taining these components (known collec-
tively as reacfive components) “corrupt”

input waveforms such as square waves, as
we just saw.

However, both capacitors and inductors
are /inear devices, meaning that the am-
plitude of the cutput waveform, whatever
its shape, increases exactly in proportion
to the input waveform’s amplitude. This
lincarity has many consequences, the most
important of which is probably the follow-
ing: The owtput of a linear circuit, driven
wilh a sine wave at some frequency I, is it-
self a sine wave at the same frequency (with,
at most, changed amplitude and phase).

Because of this remarkable property of
circuits containing resistors, capacitors,
and inductors (and, later, linear ampli-
fiers), it is particularly convenient to ana-
iyze any such circuit by asking how the out-
put voltage {(amplitude and phase) depends
on the input voltage, for sine-wave input at
a single frequency, even though this may
not be the intended use. A graph of the
resulting frequency response, in which the
ratio of output to input is plotted for each
sine-wave frequency, is useful for thinking
about many kinds of waveforms. As an ex-
ample, a certain “boom-box” icudspeaker
might have the frequency response shown
in Figure 1.46, where the “output” in this
case 15 of course sound pressure, not volt-
age. It is desirable for a speaker to have
a “flat” response, meaning that the graph
of sound pressure versus frequency is con-
stant over the band of audible frequencies.
In this case the speaker’s deficiencies can
be corrected by introducing a passive filter
with the inverse response (as shown) into
the amplifiers of the radio.

As we will see, it is possible to generalize
Ohm’s law, replacing the word “resistance”
with “impedance,” in order to describe any
circuit containing these linear passive de-
vices (resistors, capacitors, and inductors).
You could think of the subject of imped-

. ance and reactance as Ohm’s law for cir-

cuits that include capacitors and inductors.
Some important terminology: Impedance
is the “generalized resistance”; inductors
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Figure 1.46. Example of frequency analysis; “boom box" loudspeaker equalization.

and capacitors have reactance (they are
“reactive”™); resistors have resistance (they

~ are “resistive”). In other words, imped-

ance = resistance + reactance (more about
this later). However, you'll see statements
like “the impedance of the capacitor at
this frequency is ... ™ The reason you
don't have to use the word “reactance”
in such a case is that impedance covers
everything. In fact, you frequently use the
word “impedance” even when you know
it’s a resistance you're talking about; you
say “the source impedance” or “the output
impedance” when you mean the Thévenin
equivalent resistance of some source. The
same holds for “input impedance,”

In all that follows, we will be talking
about circuits driven by sine waves at a
single frequency. Analysis of circuits driv-
en by complicated waveforms is more
elaborate, involving the methods we
used earlier (differential equations) or
decomposition of the waveform into sine

waves (Fourier analysis). Fortunately, these
methods are seldom necessary.
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Witl =
Wy sin ot

Figure 1.47
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Figure 1.48

For example, a [uF capacitor put across
the 110 volt {rms) 60Hz power line draws
a current of rms amplitude

110

I= =60 <109

= 41.5mA (rms)

1.18 Frequency analysis of reactive
circuits

Let’s start by looking at a capacitor driven
by a sine-wave voltage source (Fig. 1.47).
The current is

d
I(t) = Cd_Tt/ = Cwlpcoswi
l.e., a current of amplitude I, with the
phase leading the input voltage by %0°. If
we consider amplitudes only, and disregard
phases, the current is

v

T 1wl

(Recall that w = 27 f.) It behaves like
a frequency-dependent resistance B =

l/wC', but in addition the current is 90°
out of phase with the voltage (Fig. 1.48).

I

get inio some complex algebra; you may
wish te skip over the math in some of
the following sections, taking note of the
results as we derive them. A knowledge of
the detailed mathematics is not necessary
in order to understand the remainder of
the book. Very little mathematics will be

"used in later chapters. The section ahead is

easily the most difficult for the reader with
littie mathematical preparation. Don't be
discouraged!

Voltages and currenls as complex

: npumbers

As you have just seen, there can be phase
shifts between the voltage and current:
in an ac circuit being driven by a sine
wave at some frequency. Nevertheless,
as long as the circuit contains only finear

elements (resistors, capacitors, inductors),
the magnitudes of the currents everywhere
in the circuit are still proportional to the
magnitude of the driving voltage, so we
might hope to find some generalization of
voltage, current, and resistance in order
to rescue Ohm’s law. Obviously a single
number won’t suffice to spécify the current,
say, at some point in the circuit, because
we must somehow have information about
both the magnitude and phase shift.
Although we can imagine specifying the
magnitudes and phase shifts of voltages
and currents at any poin{ in the circuit by
writing them out explicitly, e.g., V{t) =
23.78in(377t + 0.38), it turns out that our
requirements can be met more simply by
using the algebra of complex numbers to
represent voltages and currents, Then we
can simply add or subtract the complex
number representations, rather than labo-
riously having to add or subtract the actual
sinusoidal functions of time themselves.
Because the actual voltages and currents
are real quantities that vary with time, we
must develop a rule for converting from
actual quantities to their representations,

Note:. At this point it is necessary.to. __and vice versa. Recalling once again that . .

we are talking about a single sine-wave fre-
quency, w, we agree to use the foilowing
rules:
1. Voltages and currents are represented
by the complex quantities V and 1. The
voltage Vo cos(wi + &) is to be represented
by the complex number Vyef?, Recall that
ef® = cos§ -+ jsinf, where § = /—1.
2. Actual voltages and currents are ob-
tained by multiplying their complex num-
ber representations by /! and then taking
the real part: V(t) = Re(Vel™?), I(2) =
Re(Tei?)

" In other words,

complex
circuit voltage | ) number
versus time : representation
Vocos(wt +¢) > Vpel? =at+gb
multiply by
edwt and

take real part
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{In electronics, the symbol 7 is used instead
of 1 in the exponential in order to avoid
confusion with the symbol ¢ meaning cur-
rent.) Thus, in the general case the actual
voltages and currents are given by

V{t) = Re(Ve?)

= Re(V) coswt ~ Im{V)sinwt
I(t) = Re(le?)

= Re(T) coswit — Im(I) sinwt

For example, a voltage whose complex
representation is

corresponds to a (real) voltage versus time
of

V(e

‘Re[55 cos wit + 55(3) sin wt]
—3aginwt volts

Reacfance of capacitors and inductors

With this convention we can apply -com-
piex Ohm's Jaw to circuits containing ca-
pacitors and inductors, just as for resistors,
once we know the reactance of a capacitor
or inductor. Let’s find out what these are,
We have

V(t) = Re(Voe™")

For 2 capacitor, using I = C{dV/dt), we
obtain

fut
I{t) = ~VpCwsinwt = Re (Y;—;;-C—?)

i.e,, for a capacitor
XC = %j/wC

X¢ is the reactance of a capacitor at
frequency w. As an example a uF
capacitor has a reactance of —2653; ohms
at 60Hz and a reactance of —0.16;7 ohms
at IMHz. Its reactance at dc is infnite.

If we did a similar analysis for an
inductor, we would find

X1 = jwkL

A circuit containing only capacitors and
inductors always has a purely imaginary
impedance, meaning that the voltage and
current are always 90° out of phase - it is
purely reactive, When thie circuit contains
resistors, there is 2lso a real part to the
impedance. The term “reactance” in that
case means the imaginary part only.

Ohm’s law generalized

With these conventions for representing
voltages and currents, Obm’s law takes a
simple form. It reads simply .

1=V/Z
V=1z

where the voltage represented by V is
applied across a circuit of impedance Z,
giving a current represented by I. The
complex impedance of devices in series or
parallel obeys the same rules as resistance:

IMPEDANCE AND REACTANCE
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Z=7y+Zg+Za+-- (series)
Z= L

;_;W {parallel)

Finally, for completeness we summarize
here the formulas for the impedance of
resistors, capacitors, and inductors:

Zr=~R {Tesistor)
Zg = —j/wC = 1/jwC  (capacitor)
Zr = jwlL (inductor)

With these rules we can analyze many ac
circuits by the same general methods we
used in handling dc¢ circuits, ie., appli-
cation of the series and parallel formulas
and Ohm’s law. Our results for circuits
such as voltage dividers will look nearly
the same as before. For multiply connected

networks we may have to use Kirchhoff's
laws, just as with de¢ circuits, in this case
using the complex representations for V
and [: The sum of the (complex) voltage
drops around a clased loop is zero, and the
sum of the {complex) currents into a point
is zero. The latter rule implies, as with
de circuits, that the {(complex) current in &
series circuit is the same everywhere.

EXERCISE 1.16

Use the preceding rules for the impedance of
devices in parallel and in series to derive ths
formulas (Sectien 1.12) for the capacitance of
two capacitors (a) in parallel and (b) in series.
Hint: In each case, lat the individual capacitors
have capacitances Cj and Cy. Write down the
impedance of the parallel or series combination;
then equate it to the impedance of a capacitor
with capacitance C. Find C.

Let's try out these techniques on the
simplest circuit imaginable, an ac voltage
applied across a capacitor, which we con-
sidered just previously. Then, after a brief
look at power in reactive circuits (to finish
laying the groundwork), we’ll analyze some

; simple but extremely 1rnportant and useful
———RC filter circuits, e o e e

Imagine putting a {uF capacitor across
& 110 volt (rms) 60Hz power line. What
current flows? Using complex Ohm’s law,
we have.

Z=-j/wC

Therefore, the current is given by

1=V/Z

The phase of the voltage is arbitrary, so et
us choose V = A4, ie. V(1) = Acosut,
where the amplltude A = 110/2 = 156
volts. Then

[ = jwCA =~ 0.059sinwt

The resulting current has an amplitude of
59mA {41.5mA rms) and leads the voltage
by 90°. This agrees with our previous
calculation. Note that if we just wanted
to know the magnitude of the current, and

didnt care what the refative phase was,
we could have avoided doing any complex
algebra: If

A=B/C
then
A=B/C

where 4, B, and C are the magnitudes of
the respective complex numbers; this holds
for multiplication, also (see Exercise 1.17).
Thus, in this case,

I=V/Z=wCV

This trick is often useful.

Surprisingly, there is no power dissipa-
ted by the capacitor in this example. Such
activity won't increase your electric bill;
you’ll see why in the next section. Then
we will go on to look at circuits containing
resistors and capacitors with our complex
Ohm’s law.

EXERCISE 1.17
Show that if A=BC, then A=BC, where 4, B,
and C are magnitudes. Hint: Represent each
complex number in polar form, le., A =Ae®®,

Power in reactive circufts . ..

The instantaneous power delivered to any
circuit element is always given by the
product P = VI. However, in reactive
circuits where V' and I are not simply
proportional, you can’t just multiply them
together. Funny things can happen; for in-
stance, the sign of the product can reverse
over one cycle of the ac signal. Figure 1.49
shows an example. During time intervals
A and C, power is being delivered to the
capacitor (albeit at 5 variable rate), caus-
ing it to charge up; its stored energy is
increasing (power is the rate of change of
energy). During intervals B and D, the
power delivered to the capacitor is nega-
tive; it is discharging. The average power
over a whole cycle for this example is in
fact exactly zero, a statement that is always
true for any purely reactive circuit element
(inductors, capacitors, or any combination
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thereof). If you know your trigonometric
integrals, the next exercise will show you
how to prove this.

it}

e} Vg

Vi) \

I

sing
wave

~Y

A a8 c o

Figure 1.49. When driven by a sine wave, the
current through a capacitor ieads the voltage by
90°,

EXERCISE 1.18
Opticnal  exercise:  Prove that a circuit
whose current is 90° out of phase with the driv-

ing voltage consumes no power, averaged over
an gntire cycls.

How do we find the average power
consumed by an arbitrary circuit? In
general, we can imagine adding up little

pieces of VI product, then dividing by the

elapsed time. In other words,

1 T
pP= T]o V)I(t) dt

where T' is the time for one complete cy-
cle, Luckily, that's almost never necessary.
Instead, it is easy to show that the average
power is given by

P =TRe(VI*) = Re(V*I)

where V and 1 are complex rms ampli-
tudes.

Let’s take an example. Consider the
preceding circuit, with a 1 volt (rms)
sine wave driving a capacitor.  We'll
do everything with rms amplitudes, for
simplicity. We have
V=1

Vv

P =Re(VI*) = Re(~jwC) =10
That is, the average power is zero, as stated
earlier. ' ‘

(i
Vo cos wt R

Figure 1.50

As another example, consider the circuit
shown in Figure 1.50. Gur calculations go
like this: '

g

Z=1n wC

V=W

LV Vo VilR+ (o)

Z R~ (jjwC) R+ (1/w2C?)

. ViR
P=RVI) = mr ey

{In the third line we multiplied numerator

and denominator by the complex conju-

gate of the denominator, in order to make
the denominator real.) This is less than the
product of the magnitudes of V and 1. In
fact, the ratio is called the power factor:

— VU2
ME TNy
: power
power factor = ———
v [1f
_ R
RO

in this case. The power factor is the cosine
of the phase angle between the voltage and
the current, and it ranges from 0 {purely
reactive cireuit) to 1 (purely resistive). A
power factor less than | indicates some
component of reactive current,
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EXERCISE 1.19
Show that ail the average power deifivered to the
preceding circuit winds up in the resistor. Do
this by computing the value of V3/R. What is
that power, in watts, for a series circuitof a 1uF
capacitor and a 1.0k resistot placed across the
110 volt (rms), 60Hz power ling?

Power factor is a serious matter in large-
scale electrical power distribution, because
reactive currents don’t result in useful
power being delivered to the [oad, but cost
the power company plenty in terms of
I’ R heating in the resistance of generators,
transformers, and wiring. Although res-
idential users are only billed for “real”
power [Re(VI'}], the power company
charges industrial users according to the
power factor. This explains the capacitor
vards that you see behind large factories,
built to cancel the inductive reactance of
industrial machinery (i.e., motors).

EXERCISE 1.20 '
Show that adding a series capacitor of value
C = 1/w? L makes the power factor aqual 1.0in
aseries RL circuit. Now do the samae thing, but
with the word “serfes’’ changed to "paralisl.”

Voliage dividers generalized

Our original voltage divider (Fig. 1.5)
consisted of a pair of resistors in series
to ground, input at the top and output
at the junction. The generalization of
that simple resistive divider is a similar
circuit in which either or both resistors
are replaced by a capacitor or inductor {or
& more complicated network made from
R, L, and ), as in Figure 1.51. In
general, the division ratio V,u /Wi of such
a divider is not constant, but depends on
frequency. The analysis is straightforward:

I= Vin
Ziosal
Zioral = Z1 + 4o
Zg

Vo =10 = Vg

Rather than worrying about this result
in general, let’s look at some simple, but
very important, examples.

Vi
]
Vour
-]
Figure 1.51. Generalized voltage divider: a

pair of arbitrary impedances.

1.19 RC filters

By combining resistors with capacitors it
is possible to make frequency-dependent
voltage dividers, owing to the frequency
dependence of a capacitor’s impedance
2o = —j/wC. Such circuits can have the
desirable property of passing signai
frequencies of interest while rejecting
undesired signal frequencies. In this

section you will see examples of the sim- - .

plest such RC filters, which we will be
using frequently throughout the book.
Chapter 5 and Appendix H describe
filters of greater sophistication.

High-pass fliters

Figure 1.52 shows 2 voltage divider made
from a capacitor and a resistor. Complex
Ohm’s law gives

— Vin - Vin
Ziotal - R—- (J/WC)
= Vig[R + {j/wC)]
R? +1/w?C?
{For the last step, multiply top and bottom

by the compiex conjugate of the denomi-
nator.) So the voltage across F is just

1

Vou =12r= LR =~ 1 Ju?0%)

Vin[R -+ {j/wC}]R
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Most often we don’t care about the phase
of Vout, Just its amplitude:

Vout = (Voutv;ut)1/2

_ R

B TR2 + (1/w?C2))1/2
Note the analogy to a resistive divider,
where

By

Ri+ Ry
Here the impedance of the series RC
combination (Fig. 1.53) is as shown in Fig-
ure 1,54, So the “response” of this circuit,
ignoring phase shifts by taking magni-

tudes of the complex amplitudes, is given
by -

Vin

Vour = T/in

R < .
Vout = Tor (1m0
97 fRC

[ (an RO ™
and looks as shown in Figure [.55. We
could have gotten this result immediately
by taking the ratio of the magnitudes
of impedances, as in Exercise 1.17 and
the example immediately preceding it;
the numerator is the magnitude of the
impedance of the lower leg of the divider
(R), and the denominator is the magnitude

of the impedance of the series combination
of R and C.

¢
i
O 11

Py

|||v—0 g< o]

Figure 1.52. High-pass filter,

C

o—1

Figure 1.53

R

‘ —jfwe

Z e = R = fluwn
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§ = tan~! (71:;“:)

Zignal

Figure 1.54

=
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] o
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Figure 1.55. Frequency response of high-pass
filter.

You can see that the output is approxi-
mately equal to the input at high frequen-
cies (how high? = 1/RC) and goes to zero
at low frequencies. This is a very impor-
tant result. Such a circuit is called a high-

pass filter, for obvious reasons. It is very

common. For instance, the input to the
oscilloscope (Appendix A) can be switched
to ac coupling. That’s just an RC high-
pass filter with the bend at about 10Hz
{you would use ac coupling if you wanted
to look at a small signal riding on a large
dc voltage). Engineers like to refer to the
~3dB “breakpoint” of a filter {or of any
circuit that behaves like a filter). In the
case of the simple RC high-pass filter, the
—3dB breakpoint is given by

fng = 1/21TRC

Note that the capacitor lets no steady
current through (f = 0). This use as a
de blocking capacitor is one of its most
frequent applications. Whenever you need
to couple a signal from one amplifier
to another, you almost invariably use a
capacitor. For instance, every hi-fi audio
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amplifier has all its inputs capacitively
coupled, because it doesn’t know what d¢
level its input signals might be riding on.
In such a coupling application you always
pick R and € so that all frequencies of
interest (in this case, 20Hz-20kHz) are
passed without loss (attenuation).
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Figure 1.56. A, Reactance of inductors and
capacitors versus frequency; all decades are
tdentical, except for scale.

B. A single decade from part A expanded, with
standard 20% component values shown.

You often need to know the impedance
of a capacitor at a given frequency (e.g.,
for design of filters). Figure 1.56 provides
a very useful graph covering large ranges

of capacitance and frequency, giving the
value of |Z| = 1/2n fC.

0.01uF

1.0k

Figure 1.57

As an example, consider the filter shown
in Figure 1.57. It is a high-pass filter
with the 3dB point at 15.9kHz. The
impedance of a load driven by it should be
much larger than 1.0k in order to prevent
circuit Ioading effects on the filter’s output,
and the driving source should be able
to drive a 1.0k load without significant
attenuation (loss of signal amplitude) in
order to prevent circuit loading effects by
the filter on the signal source.

R

Vin Vaut
T

'Figure 1.58. Low-pass filter.

" Low-pass filters

You can get the opposite frequency behav-
jor in a filter by interchanging R and C
(Fig. 1.38). You will find

1
(1 +w?R2C%)L/?
as seen in Figure 1.59. This is called a

low-pass filter. The 3dB point is again at a
frequency

Vout = Via

F=1/2xRC

Low-pass filters are quite handy in real
life. For instance, a low-pass filter can be
used to eliminate interference from nearby
radio and television stations (550kHz-
$00MHz), a problem that plagues audio
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amplifiers and other sensitive electronic
equipment,

1.0

=

oul

In
0 |
_3
Waos " B

Figure i.59. Frequency response of low-pass
filter.

EXERCISE 1.21

Show that the preceding expression for the
response of an RC low-pass fiter is corract.

The low-pass filter's output can be
viewed as a signal source in its own right.
When driven by a perfect ac voltage (zero

phase shift

- 4593

_go°

source impedance), the filter's output looks
like It at low frequencies (the perfect sig-
nal source can be replaced by a short, i.e.,
by its small-signal source impedance, for
the purpose of impedance calculations).
It drops to zero impedance at high fre-
quencies, where the capacitor dominates
the output impedance. The signal driving
the filter sees.a load of R plus the load
resistance at low frequencies, dropping to
R at high frequencies.

In Figuré 1.60, we've plotted the same
fow-pass filter response with logarithmic
axes, which is a more usual way of doing
it. You can think of the vertical axis as
decibets, and the horizontal axis as ociaves
{or decades). On such a plot, equal dis-
tances correspond to equal ratios. We've
also plotted the phase shift, using a linear

0.001 1 1 1

Figure 1.60. Frequency response
{phase and amplitude) of low-pass
filter, plotted on logarithmic

axes. Note that the phase shift

is 45%at the 3dB point and is
within 6° of its asymptotic

0.01/50g Q1 308 Faap 10f35

) vatue for & decade of frequency
100fe  change,
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vertical axis {degrees) and the same loga-
rithmic frequency axis. This sort of plot is
good for seeing the detailed response even
when it is greatly attenuated (as at right);
we'li see a number of such plots in Chap-
ter 5, when we treat active filters. Note
that the filter curve plotted here becomes
a straight line at large attenuations, with
a slope of —20dB/decade (engineers prefer
to say “—6&dB/octave™). Note also that the
phase shift goes smoothly from 0° (at fre-
guencies well below the breakpoint) to 90°
{well above it), with a value of 45° at the
—3dB point, A rule of thumb for single-
section RC filters is that the phase shift is
73 6° from its asymptotic value at 0.1 fags
and 10fs34p.

EXERGISE 1.22
Prove the last asserticn,

An interesting question is the following:
Is it possible to make a filter with some
arbitrary specified amplitude response and
some other specified phase response? Sur-
prisingly, the answer is no: The demands
of causality (i.e., that response must follow
cause, not precede it) force a relationship
between phase and ampiitude response of

- realizable analog filters (known officially as

the Kramers-Kronig relation).

RC differentiators and integrators in the
frequency domain

' The RC differentiator that we saw in Sec-

tion 1.14 is exactly the same circuit as the
high-pass filter in this section. In fact, it

van be considered as either, depending on.

whether you’re thinking of waveforms in
the time domain or response in the fre-
quency domain. We can restate the ear-
lier time-domain condition for its proper
operation (Vout € Vi) in terms of the
frequency response: For the output to be
small compared with the input, the signal
freguency {(or frequencies) must be well
below the 3dB point. This is easy to check.

Suppose we have the input signal
Vin = sinwt

Then, using the equation we obtained
earlier for the differentiator output,

d
Vout = ROEZ sinwt = wRC coswi

and so Vo € Vi, if wRC <€ 1, ie,
RC < 1/w. If the input signal contains a
rahge of frequencies, this must hoid for the
highest frequencies present in the input.
The RC integrator (Section 1.15) is
the same circuit as the low-pass filter; by
similar reasoning, the criterion for a good
integrator is that the lowest signal frequen-
cies must be well above the 3dB point.

Inductors versus capacilors

Inductors could be used, instead of capaci-
tors, in combination with resistors to make
low-pass {or high-pass) filters. In prac-
tice, however, you rarely see AL low- or
high-pass filters. The reason is that induc-
tors tend to be more bulky and expensive
and perform less well (i.e., they depart
further from the ideal) than capacitors. 1f
vou have a choice, use a capacitor. One
exception to this general statement is the
use of ferrite beads and chokes in high-
frequency circuits. You just string a few
beads here and there in the circuit; they
make the wire interconnections slightly in-
ductive, raising the impedance at very high
frequencies and preventing “oscillations,”
without the added resistance you would get
with an RC filter. An RF “choke” is an in-
ductor, usually a few turns of wire wound
on a ferrite core, used for the same purpose
in RF circuits.

[11.20 Phasor diagrams

There’s a nice graphic method that can
be very helpful when trying to understand
reactive circuits. Let’s take an exampie,
namely the fact that an RC filter atten-
uates 3dB at a frequency f = /27 RC,
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which we derived in Section 1.19. This
is true for both high-pass and low-pass
filters. Tt is easy to get a bit confused here,
because at that frequency the reactance
of the capacitor equals the resistance of
the resistor; so you might at first expect
6dB attenuation. That is what you would
get, for example, if you were to replace
the capacitor by a resistor of the same
impedance (recall that 6dB means half
voltage).  The confusion arises because
the capacitor is reactive, but the matter
is clarified by a phasor diagram (Fig.
[.61). The axes are the real (resistive)
and imaginary (reactive) components of
the impedance. In a series circuit like
this, the axes also represent the {complex)
voltage, because the current is the same
everywhere. So for this ecircuit {think of
it as an R-C voltage divider) the input
voltage (applied across the series RB—C
pair) is proportional to the length of the
hypotenuse, and the output voltage {(across
R only) is proportional to the length of
the K leg of the triangle. The diagram
represents the situation at the frequency
where the magnitude of the capacitor’s
reactance equals R, i.e., f = 1/2rRC, dnd
shows that the ratio of output voltage to
input voltage is 1//Z, i.e., -3dB.

2R

RC filter at 3dB paint resistive divider: A, =R, = g

{—Ed8)
A ot B
Figure 1,61

The angle between the vectors gives the
phase shift from input to output. At the
3dB point, for instance, the cutput amipli-
tude equals the input amplitude divided by
the square root of 2, and it leads by 45¢
in phase. This graphic method makes it
easy to read off amplitade and phase rela-
tionships in RLC circuits. For example,

YOu can use it to get the response of the
high-pass filter that we previousty derived
algebraically,

EXERCISE 1.23
Use a phasor diagram to derive the response of
an RC high-pass filter:

R _
Vout = 7 (ijw2caypre /in

EXERCISE 1.24
At what frequency does an RC low-pass filter
attenuate by 6dB {cutput voltage equal to half
the input voltage)? What is the phase shift at
that frequency? i

EXERCISE 1.25

Use a phasor diagram to obtain the low-pass

filter response previously derived algsbraically.

In the next chapter {Section 2.08) you
will see a nice example of phasor diagrams
in connection with a constant-amplitude
phase-shifting circuit.

1.21 “Poles” and decibels per octave

Look again at the response of the R low-
pass filter (Fig. 1.59). Farto the right of the
*knee” the output amplitude is dropping
proporticnal to 1/f. In one octave {as in
music, one octave is twice the frequency)
the output amplitude will drop to half,
or —6dB; so a simple RC fiter has a
6dB/octave falloff. You can make filters
with several RC sections; then you get
12dB/octave (two R( sections), 18dB/oc-
tave (three sections), etc. This is the usual
way of describing how a filter behaves
beyond the cutoff. Another popular way
is to say a “3-pole filter,” for instance,
meaning a flter with three R sections
(or one that behaves like one). (The word
“pole” derives from a method of analysis
that is beyond the scope of this book and
that involves complex transfer functions in
the complex frequency plane, known by
engineers as the “s-plane.”)

A caution on multistage flters: You
can’t simply cascade several identical fil-
ter sections in order to pet a frequency
response that is the concatenation of the
individual responses. The reason is th‘at
each stage will load the previous one sig-
nificantly (since they're identical}, chang-
ing the overall response. Remember that
the response function we derived for the
simple RC filters was based on a zero-
impedance driving source and an infinite-
impedance load. One solution is to make
each successive filter section have much
higher impedance than the preceding one.
A better solution involves active circuits
like transistor or-operational amplifier {op-
amp) interstage “buffers,” or active filters.
These subjects will be treated in Chapters
‘2 through 5.



