Signals and Systems - H. P. Hsu, section 5.47

5.47. The most widely used graphical representation of the frequency response $H(\omega)$ is the Bode plot in which the quantities $20\log_{10}|H(\omega)|$ and $\theta_H(\omega)$ are plotted versus ω , with ω plotted on a logarithmic scale. The quantity $20\log_{10}|H(\omega)|$ is referred to as the magnitude expressed in decibels (dB), denoted by $|H(\omega)|_{\rm dB}$. Sketch the Bode plots for the following frequency responses:

(a)
$$H(\omega) = 1 + \frac{j\omega}{10}$$

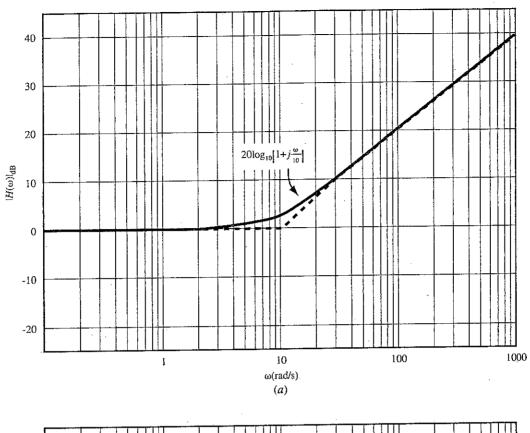
(b)
$$H(\omega) = \frac{1}{1 + j\omega/100}$$

(c)
$$H(\omega) = \frac{10^4(1+j\omega)}{(10+j\omega)(100+j\omega)}$$

(a)
$$|H(\omega)|_{dB} = 20 \log_{10} |H(\omega)| = 20 \log_{10} |1 + j\frac{\omega}{10}|$$

For
$$\omega \ll 10$$
,

$$|H(\omega)|_{dB} = 20 \log_{10} \left| 1 + j \frac{\omega}{10} \right| \longrightarrow 20 \log_{10} 1 = 0$$
 as $\omega \longrightarrow 0$



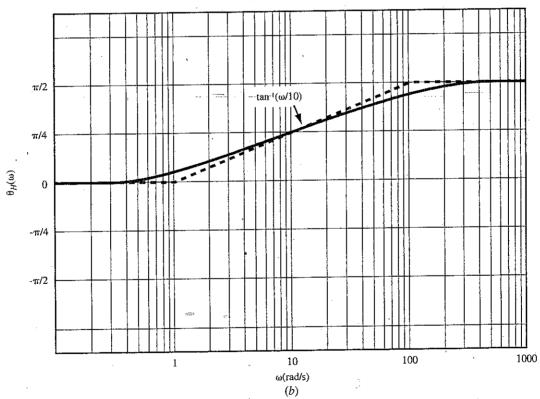


Fig. 5-28 Bode plots.

For $\omega \gg 10$,

$$|H(\omega)|_{dB} = 20 \log_{10} \left| 1 + j \frac{\omega}{10} \right| \longrightarrow 20 \log_{10} \left(\frac{\omega}{10} \right)$$
 as $\omega \longrightarrow \infty$

On a log frequency scale, $20 \log_{10}(\omega/10)$ is a straight line with a slope of 20 dB/decade (a decade is a 10-to-1 change in frequency). This straight line intersects the 0-dB axis at $\omega = 10$ [Fig. 5-28(a)]. (This value of ω is called the *corner frequency*.) At the corner frequency $\omega = 10$

$$H(10)|_{dB} = 20 \log_{10} |1 + j1| = 20 \log_{10} \sqrt{2} \approx 3 \text{ dB}$$

The plot of $|H(\omega)|_{dB}$ is sketched in Fig. 5-28(a). Next,

$$\theta_H(\omega) = \tan^{-1} \frac{\omega}{10}$$

Then

$$\theta_H(\omega) = \tan^{-1} \frac{\omega}{10} \longrightarrow 0$$
 as $\omega \longrightarrow 0$

$$\theta_H(\omega) = \tan^{-1} \frac{\omega}{10} \longrightarrow \frac{\pi}{2}$$
 as $\omega \longrightarrow \infty$

At $\omega = 10$, $\theta_H(10) = \tan^{-1} 1 = \pi/4$ radian (rad). The plot of $\theta_H(\omega)$ is sketched in Fig. 5-28(b). Note that the dotted lines represent the straight-line approximation of the Bode plots.

(b)
$$|H(\omega)|_{dB} = 20 \log_{10} \left| \frac{1}{1 + j\omega/100} \right| = -20 \log_{10} \left| 1 + j\frac{\omega}{100} \right|$$

For $\omega \ll 100$,

$$|H(\omega)|_{dB} = -20 \log_{10} \left| 1 + j \frac{\omega}{100} \right| \longrightarrow -20 \log_{10} 1 = 0$$
 as $\omega \longrightarrow 0$

For $\omega \gg 100$,

$$|H(\omega)|_{dB} = -20 \log_{10} \left| 1 + j \frac{\omega}{100} \right| \longrightarrow -20 \log_{10} \left(\frac{\omega}{100} \right)$$
 as $\omega \longrightarrow \infty$

On a log frequency scale $-20 \log_{10}(\omega/100)$ is a straight line with a slope of -20 dB/decade. This straight line intersects the 0-dB axis at the corner frequency $\omega = 100$ [Fig. 5-29(a)]. At the corner frequency $\omega = 100$

$$H(100)|_{dB} = -20\log_{10}\sqrt{2} \approx -3 \text{ dB}$$

The plot of $|H(\omega)|_{dB}$ is sketched in Fig. 5-29(a). Next

$$\theta_H(\omega) = -\tan^{-1}\frac{\omega}{100}$$

Then

$$\theta_H(\omega) = -\tan^{-1}\frac{\omega}{100} \to 0$$
 as $\omega \to 0$

$$\theta_H(\omega) = -\tan^{-1}\frac{\omega}{100} \to -\frac{\pi}{2}$$
 as $\omega \to \infty$

At $\omega = 100$, $\theta_H(100) = -\tan^{-1}1 = -\pi/4$ rad. The plot of $\theta_H(\omega)$ is sketched in Fig. 5-29(b).

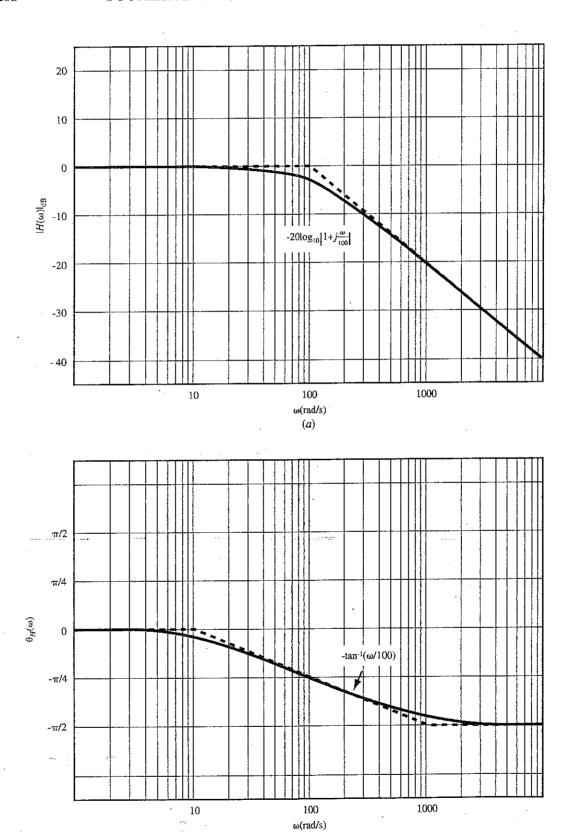


Fig. 5-29 Bode plots:

(b)

(c) First, we rewrite $H(\omega)$ in standard form as

$$H(\omega) = \frac{10(1+j\omega)}{(1+j\omega/10)(1+j\omega/100)}$$

Then

$$|H(\omega)|_{dB} = 20 \log_{10} 10 + 20 \log_{10} |1 + j\omega| - 20 \log_{10} |1 + j\frac{\omega}{10}| - 20 \log_{10} |1 + j\frac{\omega}{100}|$$

Note that there are three corner frequencies, $\omega=1,~\omega=10,$ and $\omega=100.$ At corner frequency $\omega=1$

$$H(1)|_{dB} = 20 + 20 \log_{10} \sqrt{2} - 20 \log_{10} \sqrt{1.01} - 20 \log_{10} \sqrt{1.0001} \approx 23 \text{ dB}$$

At corner frequency $\omega = 10$

$$H(10)|_{dB} = 20 + 20 \log_{10} \sqrt{101} - 20 \log_{10} \sqrt{2} - 20 \log_{10} \sqrt{1.01} \approx 37 \text{ dB}$$

At corner frequency $\omega = 100$

$$H(100)|_{dB} = 20 + 20 \log_{10} \sqrt{10,001} - 20 \log_{10} \sqrt{101} - 20 \log_{10} \sqrt{2} \approx 37 \text{ dB}$$

The Bode amplitude plot is sketched in Fig. 5-30(a). Each term contributing to the overall amplitude is also indicated. Next,

$$\theta_H(\omega) = \tan^{-1} \omega - \tan^{-1} \frac{\omega}{10} - \tan^{-1} \frac{\omega}{100}$$

Then

$$\theta_H(\omega) = \longrightarrow 0 - 0 - 0 = 0$$
 as $\omega \longrightarrow 0$

$$\theta_H(\omega) = \longrightarrow \frac{\pi}{2} - \frac{\pi}{2} - \frac{\pi}{2} = -\frac{\pi}{2}$$
 as $\omega \longrightarrow \infty$

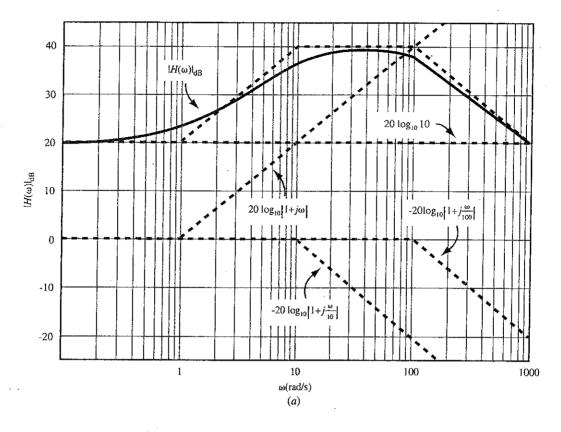
and

$$\theta_H(1) = \tan^{-1}(1) - \tan^{-1}(0.1) - \tan^{-1}(0.01) = 0.676 \text{ rad}$$

$$\theta_H(10) = \tan^{-1}(10) - \tan^{-1}(1) - \tan^{-1}(0.1) = 0.586 \text{ rad}$$

$$\theta_H(100) = \tan^{-1}(100) - \tan^{-1}(10) - \tan^{-1}(1) = -0.696 \text{ rad}$$

The plot of $\theta_H(\omega)$ is sketched in Fig. 5-30(b).



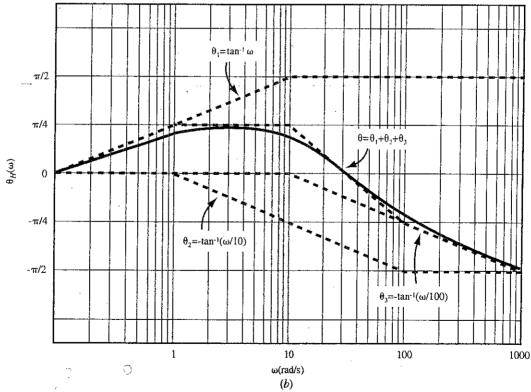


Fig. 5-30 Bode plots.