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Preface

We scientists claim to be able to make predictions about the behaviour of the physical
world – more than that, we claim to be able to make quantitatively accurate predictions,
and make statements that are ’true’, at least in the sense that we can quantify their
accuracy. Can we actually do that? Can we do that in large-scale and complex settings
where the answer really matters?

This short course provides some computational tools for one of the best current
technologies we have for trying to fulfill that goal – that is MCMC for performing
sample-based inference. The acronym ‘MCMC’ stands for Markov chain Monte Carlo
which is a suite of methods and algorithms for calculating statistics over complex
probability distributions, i.e., performing inference. One of the big goals these days is
to avoid both the MCs, that is, not build a Markov chain, and do better than Monte
Carlo integration. However we will still use the term MCMC (spoken em-cee-em-cee)
because it seems to have stuck.

Many models for physics systems are written in terms of PDEs (partial differential
equations). That’s often because the governing equations are basically Newton’s sec-
ond law, which is a differential equation (f = ma, or f = mẍ) and coupled with a
constitutive law (e.g. f = −kx) we find that the system dynamics satisfy a differential
equation (mẍ + kx = 0 giving SHM). Another common class of PDEs is the conser-
vation equations which take the form ∇ · J(x) = 0 (∇· is spoken ’div’, being short for
‘divergence’) when J(x) is the spatially varying vector flow of some quantity that is
conserved. More generally ∇ · J(x) is the effective source density of the quantity, and
we have a continuity equation of the form ∇ · J(x) = ρ̇ where ρ is the density of stuff
that flows according the J . An example of an equilibrium law is Kirchoff’s law, when
J is electrical current (electrons are conserved). Then coupled with a constitutive
law, e.g. Ohm’s law that J = σ(x)∇u(x) (J equals sigma grad u) we end up with a
typical equilibrium equation ∇ · σ(x)∇u(x) = 0. Constitutive laws can be nonlinear,
with coefficients that depend on the solution or the history, that lead to (way) more
complicated PDEs.
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Some big examples

Yucca mountain nuclear waste repository

Here’s a large-scale and complex problem that really matters. (Source: Wikipedia)

The Yucca Mountain Nuclear Waste Repository was to be a deep geological reposi-
tory storage facility for spent nuclear fuel and other high level radioactive waste.

The (USA) DOE began studying Yucca Mountain in 1978 to determine whether
it would be suitable for long-term geologic repository for over 70,000 metric tons of
spent nuclear fuel and high-level radioactive waste. Long term means 10,000 years
to 1,000,000 years. In 2005, the United States Environmental Protection Agency
proposed a limit of 350 millirem per year for that period. In 2007, the DOE issued a
draft of the Supplemental Environmental Impact Statement in which it shows that for
the first 10,000 years mean public dose would be 0.24 mrem/year and that thereafter
to 1,000,000 years the median public dose would be 0.98 mrem/year, both of which
are substantially below the proposed EPA limit.

The formation that makes up Yucca Mountain was created by several large eruptions
from a caldera volcano and is composed of alternating layers of ignimbrite (welded
tuff), non-welded tuff, and semi-welded tuff. The volcanic tuff at Yucca Mountain
is appreciably fractured and movement of water through an aquifer below the waste
repository is primarily through fractures. Some site opponents assert that, after the
predicted containment failure of the waste containers, these cracks may provide a route
for movement of radioactive waste that dissolves in the water flowing downward from
the desert surface. Officials state that the waste containers will be stored in such a
way as to minimize or even nearly eliminate this possibility.

The area around Yucca Mountain received much more rain in the geologic past and
the water table was consequently much higher than it is today, though well below the
level of the repository.

Given all this information and uncertainties, how confident (and correct) can we be
when making predictions about the bahaviour of such a complex system?
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Mokai geothermal field modelling for electricity generation

On a much smaller scale, but nevertheless still large-scale by current standards in UQ,
is the modelling and prediction of the behaviour of the geothermal field at Mokai (NZ),
that I helped with. The resulting MCMC analysis of this problem is a contender for
the largest correct and complete MCMC interpreting measured data for an inverse
problem in a PDE. We will see the MCMC algorithm developed for this problem in
Lecture 2.

The Mokai geothermal field is located 20 km north of Taupo. The Mokai power
station was commissioned in 2000 with an initial installed capacity of 55 MW. A 39
MW expansion of similar design was commissioned in 2005. A further 17 MW binary
plant extension was installed at the station in 2007 to take account of the changing
steam/water ratios caused by exploitation. Annual generation is about 930 GWh. In
2011 there were 22 wells in total, 11 for production, six for injection and four others.

The continuity equation giving a multiphase non-isothermal flow model for this field
is (in brief): Mass (α = m) and energy (α = e) balance equations

d

dt

∫
Ω

MαdV =

∫
∂Ω

Qα · n̂dΓ +

∫
Ω

qαdV

Flux Qα calculated from

Mm = φ (ρlSl + ρvSv)

Me = (1− φ)ρrcrT + φ (ρlulSl + phovuvSv)

Qm =
kkrl
vl

[
ρlg −∇p

]
+
kkrv
vv

[
ρvg −∇p

]
Qe = −hlkkrl

vl

[
ρlg −∇p

]
− hvkkrv

vv

[
ρvg −∇p

]
−K∇T
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for porosity φ, permeability k, and relative permeabilities krl krv given by van Genuchten-
Mualem model.

Numerical solution by finite volume method (TOUGH2), using the fine and coarse
discretizations (10,046 parameters in representation):
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Here are some sample-based results (left to right, top to bottom): the mean temper-
ature, standard deviation of the sample mean, and two samples from the chain over
(predicted) temperature.

For further details, see: Cui T Fox C and O’Sullivan M J 2011 Bayesian cali-
bration of a large-scale geothermal reservoir model by a new adaptive delayed ac-
ceptance Metropolis Hastings algorithm. Water Resources Research, 47, W10521,
doi:10.1029/2010WR010352.
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The absurd range of skills required

The Berkeley stattician Le Cam has been quoted as saying of inverse problems

the forward problem is probability and the inverse problem is statistics

which is true (and useful to observe), but it does not get anywhere near expressing the
range of skills that are required in resolving real problems in uncertainty quantification.
Indeed, by implying that inverse problems are nothing more than the fields that he
is expert in, Le Cam displayed the myopia that is unfortunately quite common in
inverse problems; often experts in one field produce ‘solutions’ that are based on highly
technical and correct work in their own field, but that fail to account for critical
issues that arise from other aspects of the problem. To genuinely make useful and
correct statements in large-scale problems, one needs to be aware of all aspects of the
problem, from problem statement through modelling and mathematical formulation,
right through to output analysis of the computational statistics and statement of
conclusions.

So what skills/fields are involved?

• Correct physical modeling to state the PDEs: In all real inverse problems that
I know of, modelling error is greater than error (noise) in observations. So
it is critical to understand the modelling process, and what assumptions and
approximations are involved. This work is best done by an expert in the field,
so one needs to be able to, at least, talk to domain-specific experts.

• Engineering of the measurement system: Often the measurement system con-
tributes to the observation process. Good engineering tries to minimize the
influence of the measurement system, but usually some biases or unintended
physical processes remain. Modelling the observation process requires discover-
ing all the processes that contribute to observations (up to some point), which
often means having some knowledge of the measurement system.

• Probabilistic modelling of measurement uncertainties: The Bayesian formulation
requires distributions over all uncertain quantities, from unknown parameters
to uncertain observations. Getting those correct, or validated, is necessary if
uncertainties are to be quantified.

• Adequate numerical solvers: Computational science for PDEs is a well developed
and sophisticated field. Indeed, some people spend their whole careers studying
nothing else. How best to merge the computational statistics and the numerical
solvers remains a topic of research.

• Correct a priori representations: The problem statement puts no constraints
on how we represent the unknowns. How do you represent something that you
don’t know, when you are free to use anything? Often the physical unknowns
are spatially varying quantities, so the fields of spatial statistics, pattern theory,
and stochastic geometry are very pertinent. We would love to be able to include
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expert knowledge into representations (e.g., compute over the space of geological
models that a geologist believes), but this is currently beyond our computational
capability. Unfortunately, one often sees low-level representations (e.g., linear
spaces) that are convenient for the mathematician but not physically plausible.

• Efficient MCMC. Sample-based inference in inverse problems with PDEs can
be a compute intensive business. The development of better algorithms and
computation is often needed to resolve specific applications.

One does not need to be expert in all these areas to make a contribution, but one
certainly needs to be aware and conversant in all these aspects of the problem.
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1 Lecture 1

1.1 Problems and goals

The aim of collecting data is to gain useful information about a physical system or
phenomenon of interest. Inverse problems occur in those frequent situations where
the quantities we can measure are not the ones that we are primarily interested in.
Typically we can measure data that depends in some way on the quantities we want,
so the data at least contains some information about those quantities. Starting with
the data that we have measured, the problem of trying to reconstruct the quantities
that we really want is called an inverse problem. We often say an inverse problem is
where we measure an effect and want to determine the cause.

Most science and statistics is data-driven in this way, though not always called an
‘inverse problem’. The quintessential setting is where the measurement process is a
complex physical relationship, and inversion presents analytic difficulties.

In physics, that cause-effect relationship is well defined, repeatable, and can be quan-
titatively modelled. In this course we focus on forward models that require the solution
of a PDE (partial differential equation) – strictly, we should say a BVP (boundary value
problem).

In a mathematical setting, we represent the measurement process by a family of
models parameterized by x, where all necessary physical parameters are contained in
x, including nuisance parameters. In the language of inverse problems, simulation of
the model for given x defines the forward map A : x 7→ d giving data d in the absence
of errors. Determining and simulating the map A : x 7→ d is the forward problem,
whereas inferring x from d is the inverse problem.

We take a Bayesian route to the inverse problem, and recognize that all components
of this process contain errors, or uncertainties. All available data contains measure-
ment errors, so the estimated unknowns are to some degree uncertain. A natural
question then arises: if measurement noise corrupting the data follows some statistics,
what is the distribution over the possible solutions after the estimation procedure?
Bayesian thinking explicitly allows for the unknown vector x to be interpreted as a
random variable with a distribution of its own.

1.2 Forward maps and hierarchical models

In physics and signal processing, the observation process is depicted as
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1 Lecture 1

In statistics, a hierarchical model for the inverse problem is, in the general form,

y|x, θ ∼ π (y|x, θ) (1.1a)

x|θ ∼ π (x|θ) (1.1b)

θ ∼ π (θ) . (1.1c)

This hierarchical stochastic model occurs commonly in statistics, in which y is observed
data, x is a latent field, and θ is a vector of hyperparameters that model uncertainties in
the measurement noise and in modeling of the latent field process. In the language of
Bayesian analysis, (1.1a) defines the likelihood function for unknown x and θ once data
y is observed, (1.1b) is the prior distribution over latent field x with hyperparameters
θ, and (1.1c) sets the hyperprior distribution over those hyperparameters.

A very common version of this model assumes additive noise, as above, that is zero
mean Gaussian, and uses a GMRF (Gaussian Markov random field) as a model for x,
giving the model

y|x, θ ∼ N (Ax,Σ (θ)) (1.2a)

x|θ ∼ N
(
µ,Q−1 (θ)

)
(1.2b)

θ ∼ π (θ) . (1.2c)

Here, x is modelled as a multivariate normal with mean µ, and θ is a vector of hy-
perparameters that model uncertainties in the measurement noise covariance Σ and in
modeling of the precision (inverse of covariance) matrix Q of the latent field.

A nice representation of conditional dependencies is given by the DAG (directed
acyclic graph)
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1.3 Posterior exploration

1.3 Posterior exploration

The focus of inference is the posterior distribution over unknowns x and θ conditioned
on measured y, given by Bayes’ rule as

π (x, θ|y) =
π (y|x, θ)π (x, θ)

π (y)
. (1.3)

Note that we are performing the standard abuse of notation by using the symbol π
to denote any probability density function, and associated distributions, with the par-
ticular function determined implicitly by the arguments. Solutions and uncertainties
may be computed as the posterior expectation of some function g of x,

Ex,θ|y [g (x)] =

∫
g (x)π (x, θ|y) dxdθ

which implicitly averages over the nuisance parameter θ. Sample-based methods use
a Monte Carlo estimate of the integral. When (x, θ)(1), . . . , (x, θ)(N) ∼ π (x, θ|y) are
iterates of an ergodic Markov chain,

Ex,θ|y [h (x)] ≈ gN ≡
1

N

N∑
i=1

g
(
x(i)
)

with convergence guaranteed by a central limit theorem (CLT).
When the x(i) are independent, an suitable CLT gives

gN − E [g]√
Var(gN )

∼ N(0, 1)

where

Var(gN ) =
Var(g)

N
.

When the x(i) come from a correlated Markov chain, instead we find (for large N)

Var(gN ) =
Var(g)

N

(
1 + 2

∞∑
i=1

ρgg(i)

)
where ρgg(i) is the autocorrelation coefficient for the chain in g at lag i. Thus, the
rate of variance reduction, compared to independent samples, is reduced by the factor

τ =

(
1 + 2

∞∑
i=1

ρgg(i)

)
that is called the integrated autocorrelation time (for the statistic g). We can think of
τ being the length of the correlated chain that produces the same variance reduction
as one independent sample.

A CLT for correlated Markov chains is given in: C. Kipnis and S. R. S. Varad-
han. Central limit theorem for additive functionals of reversible Markov processes and
applications to simple exclusions. Comm. Math. Phys., 104(1):1–19, 1986.
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1 Lecture 1

1.3.1 Metropolis-Hastings MCMC

The Metropolis-Hastings (MH) algorithm is the basis of nearly all sampling algorithms
that we currently use. This algorithm was originally developed for applications in
statistical physics, and was later generalized to allow general proposal distributions
(Hastings 1970), and then allowing transitions in state space with differing dimension
(Green 1995). Even though we do not always use variable-dimension models, we
prefer this Metropolis-Hastings-Green (MHG) ‘reversible jump’ formulation of MH
as it greatly simplifies calculation of acceptance probabilities for the subspace moves
that are frequently employed in inverse problems. One step of MHG dynamics can be
written as:

Algorithm 1 (MHG) Let the chain be in state xn = x, then xn+1 is determined in
the following way:

1. Propose a new candidate state x′ from x depending on random numbers γ with
density q(γ).

2. With probability

α(x, x′) = min

(
1,
π(x′|d)q(γ′)

π(x|d)q(γ)

∣∣∣∣∂(x′, γ′)

∂(x, γ)

∣∣∣∣) (1.4)

accept the proposed state by setting xn+1 = x′. Otherwise reject by setting xn+1 =
x.

The last factor in eqn (1.4) denotes the magnitude of the Jacobian determinant of
the transformation from (x, γ) to (x′, γ′), as implemented in computer code for the
proposal. A few details remain to be specified such as the choice of starting state, and
the details of the proposal step.

The only choice one has within the MHG algorithm, is how to propose a new state
x′ when at state x. The popular choice of Gibbs sampling is the special case where
x′ is drawn from a (block) conditional distribution, giving α(x, x′) = 1. The choice
of the proposal density is largely arbitrary, with convergence guaranteed when the
resulting chain is irreducible and aperiodic. However, the choice of proposal distri-
bution critically affects efficiency of the resulting sampler. The most common MH
variants employ random walk proposals that set x′ = x + γ where γ is a random
variable with density q(·), usually centered about zero. In high-dimensional problems,
global proposals that attempt to change all components of the state usually have van-
ishingly small acceptance probability, so are not used. Since ill-posedness results in
extremely high correlations, single-component proposals result in slow mixing. Hence,
a multi-component update is usually required, that is problem specific.

1.3.2 Some inverse problems in PDEs

Many potential imaging modalities such as optical diffusion ‘tomography’ involve
strong scattering of the waves. In these cases the paths of propagation depend im-
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1.3 Posterior exploration

Figure 1.1: A schematic of the measurement process in optical diffusion tomography.

plicitly on the object being imaged. Then the wave field that propagates and scatters
must be modelled by requiring that it satisfies a partial differential equation (PDE) in
which the unknown object properties appear as spatially-varying coefficients. Three
examples of governing PDEs, corresponding to three different types of energy being
propagated, are given in the following table.

object property governing PDE PDE classification
electrical conductivity ∇ ·(σ∇φ) = s elliptic

acoustic impedance ∇ ·(σ∇p) =
σ

c2
p̈ hyperbolic

thermal conductivity ∇ ·(σ∇u) = u̇ parabolic

In each case the object property being sought is denoted by σ and appears as the
spatially-varying coefficient in the PDE governing the propagation of energy, or ‘waves’.
The measurements made are of the boundary values of electrical potential φ, sound
pressure p, and temperature u, respectively in the three cases. If the scattered field
can be well approximated as a small change about a known field then the (linear)
Born approximation may be used to simulate the measurement process. Otherwise,
the measurement process must be simulated by solving the PDE subject to boundary
conditions that correspond to the wave irradiation. In that case the mapping from
object property, σ, to measurements is nonlinear. This latter property presents a
basic difficulty in these inverse problems and, as we will see later, is one reason why
straightforward application of algorithms that have been successful for linear inverse
problems, such regularization, do not provide quantitatively accurate solutions in this
class of inverse problems.

An inverse problem in the heat equation

The first specific example we look at is in the heat equation, in 1 space variable. We
will estimate the (scalar) diffusivity D from solution of a partial differential equation,
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1 Lecture 1

and consider related inverse problems.
Suppose we have a rod of length L, and that u ≡ u (x, t) is the temperature of the

rod at position x ∈ [0, L] and time t ≥ 0. (We could also be modelling the spread of a
bug that diffuses, or any other conserved diffusing quantity.) The temperature is held
at temperature 0 at the ends of the rod so that u (0, t) = u (L, t) = 0.

Local conservation of heat gives the diffusion equation

∂u

∂t
=

∂

∂x
D
∂u

∂x
. (1.5)

At time t = 0, the temperature is known to be

u (x, 0) =

{
1 for 0.75L ≤ x ≤ 0.8L
0 otherwise

(1.6)

At time t = T, the temperature is measured at points x1, x2, . . . , xK . Since the mea-
surements are inexact, the data vector is y = (yi) where

yi = u (xi, T ) + εi (1.7)

and εi are normally distributed with standard deviation s. From these measurements,
we wish to sample from the posterior distribution of D, assuming that the prior dis-
tribution of D is uniform on D ≥ 0.

By Bayes’ theorem,
π (D|y) ∝ π (y|D)π (D) (1.8)

The likelihood function is determined by the forward map and the noise process. Given
the diffusivity is D and given the initial conditions, we may solve the partial differential
equation and obtain the expected number density at the locations xi after a time T,
namely u (xi, T ;D). The probability that we measure the data vector y is

π (y|D) =

K∏
i=1

p (εi = yi − u (xi, T ;D)) (1.9)

∝ exp

[
−1

2

K∑
i=1

(
yi − u (xi, T ;D)

s

)2
]

(1.10)

where we have absorbed into the proportionality quantities which do not depend on
D.

For the prior, we may choose

π (D) ∝
{

1 if D ≥ 0
0 otherwise

(1.11)

As before, this is improper (i.e., not normalizable), but could be made proper without
affecting the analysis, for all practical purposes by imposing a conservative upper
bound Dmax on D.
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1.3 Posterior exploration

The posterior probability density is thus given by

π (D|y) ∝

 exp

[
− 1

2

∑K
i=1

(
yi−u(xi,T ;D)

s

)2
]

if D ≥ 0

0 otherwise
(1.12)

We can estimate D given y using sample-based inference.
We now specify a random walk Metropolis Hatings MCMC that targets π (D|y).

Let Xn = D, Xn+1 is given in the following way:

1. Let w be a positive constant. Draw r from a uniform distribution on [0, 1] and
set D′ = D + w (2r − 1)

2. With probability

α (D′|D) = min

1,

exp

[
− 1

2

∑K
i=1

(
yi−u(xi,T ;D′)

s

)2
]

exp

[
− 1

2

∑K
i=1

(
yi−u(xi,T ;D)

s

)2
]


set Xn+1 = D′, otherwise set Xn+1 = D.

Notice that at each step of the MCMC algorithm, we must compute u (xi, T ;D) ,
(i.e., solve the boundary value problem for a trial value of D) to work out what the
solution would have looked like at T if the true diffusivity were given.
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Figure 1.2: Surface is u (x, t) with the true value of D and the points show the data
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1 Lecture 1
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Figure 1.3: Output of Markov chain producing samples from posterior distribution of
the diffusivity. True D value was 0.5.
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1.4 Computing 1

1.4 Computing 1

All code listed here, is available at URL
https://coursesupport.physics.otago.ac.nz/wiki/pmwiki.php/ELEC446/BUC5, or
search for “Colin Fox Otago” and follow the link from my home page.

1.4.1 RWM sampling from N(0, 1)

Matlab code for a random-walk Metropolis Hastings targeting N(µ, σ2):

function X=mcgaus(mu,sig,x0,N,w)

%function X=mcgaus(mu,sig,x0,N,w)

%

% Return N samples of N(mu,sig^2) using a

% RWM with window w, starting at x0

X = zeros(1,N);

X(1)=x0;

for k=1:(N-1)

%xp=X(k)+w*(2*rand-1); % uniform window

xp=X(k)+w*randn; % normal window, variance w^2

alpha=min(1,exp( (-(xp-mu)^2+(X(k)-mu)^2)/(2*sig^2) ));

if rand<alpha

X(k+1)=xp; % accept

else

X(k+1)=X(k); % reject

end

end

Exercises:

1. Use the code in mcgauss.m to generate a chain of length 104 that targets N(0, 1).
Use windows w = 0.3, 3, 30.

2. Plot histograms of each chain.

3. Plot the chains, and see which window gives the most efficient mixing.

4. Adapt mcgauss.m to sample from the (unnormalized) pdf x exp(−x) for x ≥ 0.

The following code evaluates the integrated autocorrelation time (need to multiply
by 2 to transform from physics definition to statistics definition), using the UWerr.m

function available at http://www.physik.hu-berlin.de/com/ALPHAsoft/.
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1 Lecture 1

% script file to plot IACT as a function of window size for

% MH MCMC (RWM) sampling from a standard normal

ws = linspace(1,8,100); %window sizes

mu = 0;

sig = 1;

x0 = 0;

n=1e5;

for cnt = 1:length(ws)

w = ws(cnt);

X = mcgaus(mu,sig,x0,n,w);

[value,dvalue,ddvalue,tauint,dtauint,Qval] = UWerr(X’,1.5,length(X),0);

taus(cnt) = tauint*2; %to get stats definition of IACT

end

plot(ws,taus)

1.4.2 Sampling in inverse heat diffusivity problem
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