Mid- and high-level representations for inverse problems in PDEs

Colin Fox fox@physics.otago.ac.nz

Ville Kohlemainen (Kuopio), Geoff Nicholls (Oxford UK) Markus Neumayer (Graz), Daniel Watzenig (Graz)

Representations

Observation space is determined (finite set of numbers on a computer)

How to represent the unknown x is *always* a modelling choice

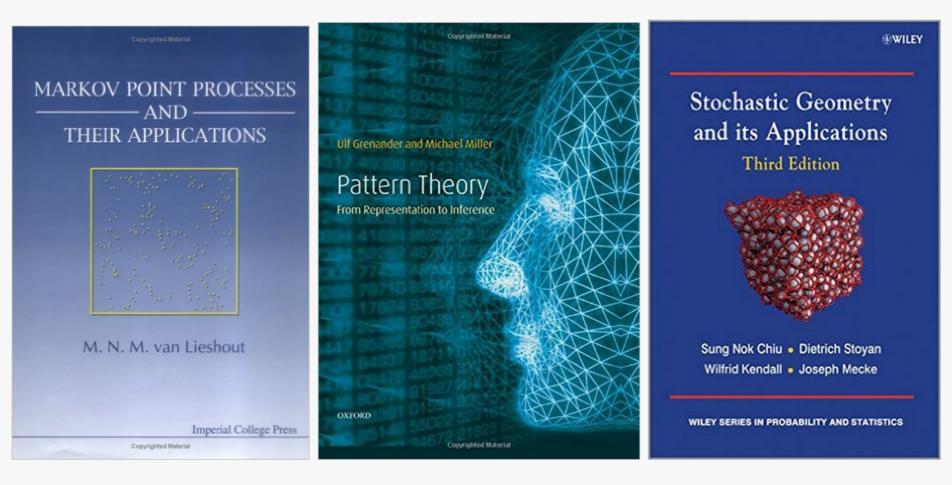
Spatially-distributed parameters often modelled using stochastic models from spatial statistics, pattern theory, stochastic geometry :

Hurn Husby & Rue (2003) classified representations/priors as

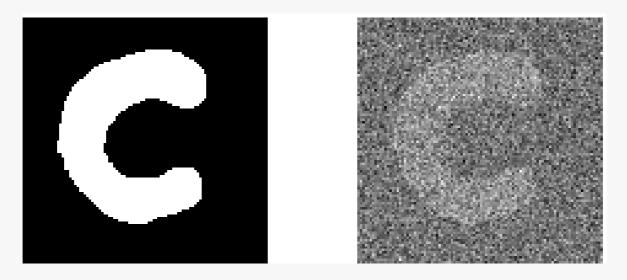
- Low level: pixel based, linear space, often GMRF, can impose local properties
- Mid level: capture some global features, often good for geometric information, e.g. boundaries/areas
- High level: objects modelled directly, good for counting number of objects

Representation of knowledge in complex systems, Grenander & Miller JRSSB 1994

3 books



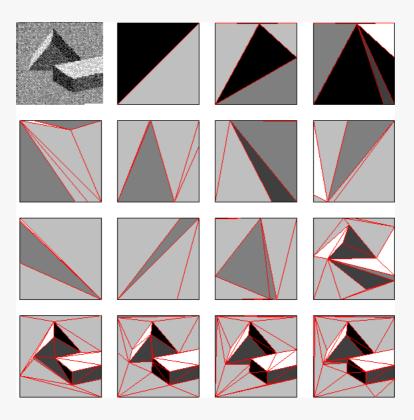
What questions are we trying to answer?



- "best" image
- How many blobs (when segmented into black and white)?
- What is the area of the blob ?
- Genus of the blob? ('C' or 'O')

A representation should make it easy to calculate information or quantities of interest. If you want to know where the boundary is, then represent the boundary explicitly!

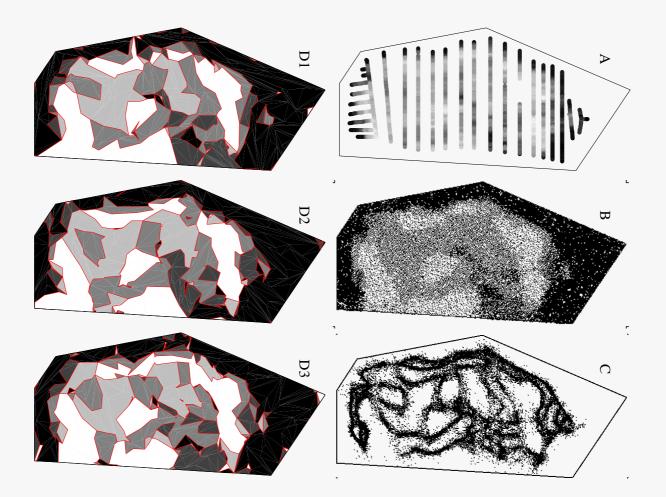
Coloured Continuum Triangulation



$$X = igcup_{i=0}^\infty \left\{ [0,1] imes [0,1]
ight\}^i$$
 , coloured

Geoff Nicholls, Bayesian image analysis with Markov chain Monte Carlo and colored continuum triangulation models JRSSB **60**:3 643-659 (1998)

Neolithic hill fort (Maori pa)



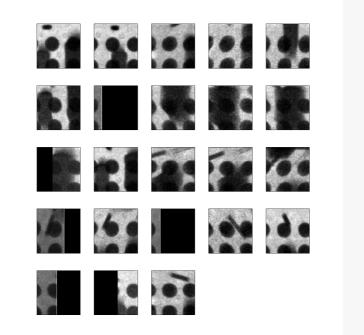
A) data, 1746 resistivity readings, (B) posterior mean resistivity, (C) posterior edge length density, (D1-3) samples from posterior

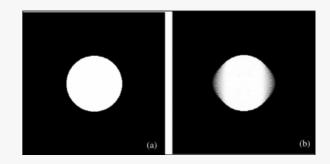
Automated inspection of BGAs by limited-angle X-ray

Low-level representation gives 'coneheads'

Standard processing is:

• Produce pixel/voxel image

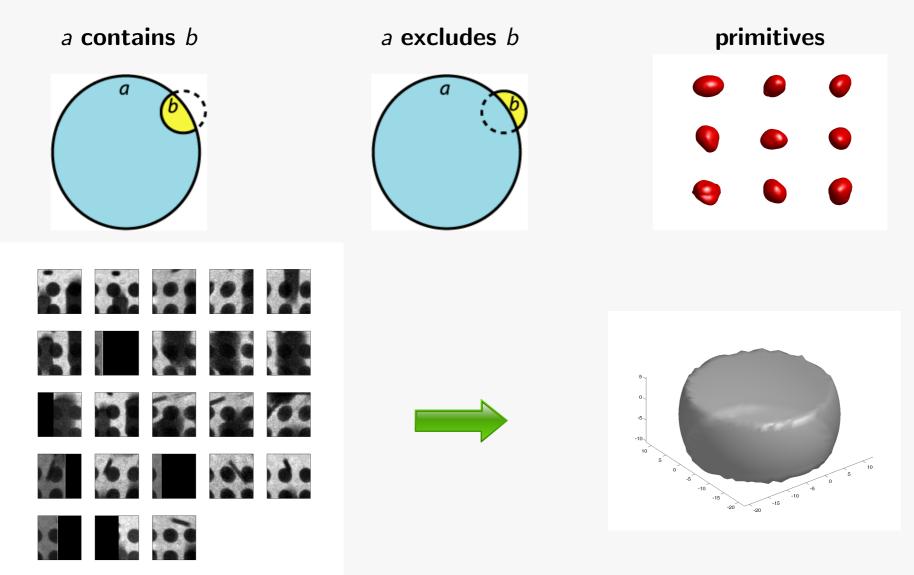




• Classify image

 $\geq 5\%$ misclassification is no use for consumer electronics

CSG representation



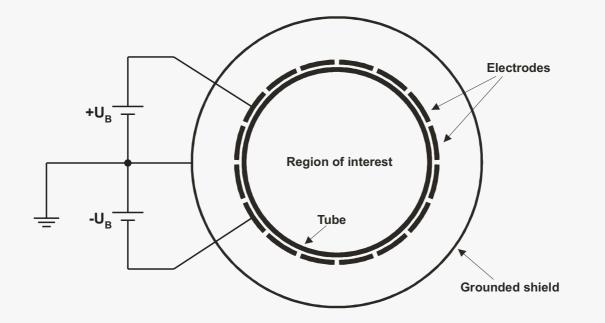
Electrical capacitance tomography

• Measure inter-electrode capacitances (1 fF to 5 pF)

$$\mathbf{q} = C\mathbf{v}$$

- Non-invasively image permittivity ε
- Primarily interested in (2-dim) area of inclusion

ECT measurement system



Assert N_{M} potential vectors $\mathbf{v}^m = \left\{ v_1^m, v_2^m, \dots, v_{N_{\mathsf{E}}}^m \right\}^{\mathsf{T}}$, for $m = 1, 2, \dots, N_{\mathsf{M}}$ Resulting potential fields denoted u^m

Measure vector of (displacement) charges is $\mathbf{q}^m = \left\{q_1^m, q_2^m, \dots, q_{N_{\mathsf{E}}}^m\right\}^{\mathsf{T}}$ \mathbf{q}^m is a *linear* function of \mathbf{v}^m , hence

$$\mathbf{q} = C\mathbf{v}$$

where C is the $N_{\mathsf{E}} \times N_{\mathsf{E}}$ matrix of trans-capacitances.

$\begin{aligned} \nabla \cdot (\varepsilon \nabla u) &= 0 & \text{in } \Omega \cup \Omega_{\mathsf{E}} & \nabla \cdot \sigma \nabla u &= 0 & \text{in } \Omega \\ u|_{\partial \Omega_k} &= v_k & k = 1, 2, \dots, N_{\mathsf{E}}, S \\ \text{Measured charge related to fields by} & \int_{e_l} \sigma \frac{\partial u}{\partial n} dS &= I_l \\ q_k &= \int_{\partial \Omega_k} \varepsilon \nabla u \cdot \mathbf{n} \, dl, & k = 1, 2, \dots, N_{\mathsf{E}} & \sigma \frac{\partial u}{\partial n} \Big|_{\partial \Omega \setminus \bigcup_l e_l} = 0 \\ & \left(u + z_l \sigma \frac{\partial u}{\partial n} \right) \Big|_{e_l} = U_l \end{aligned}$

EIT

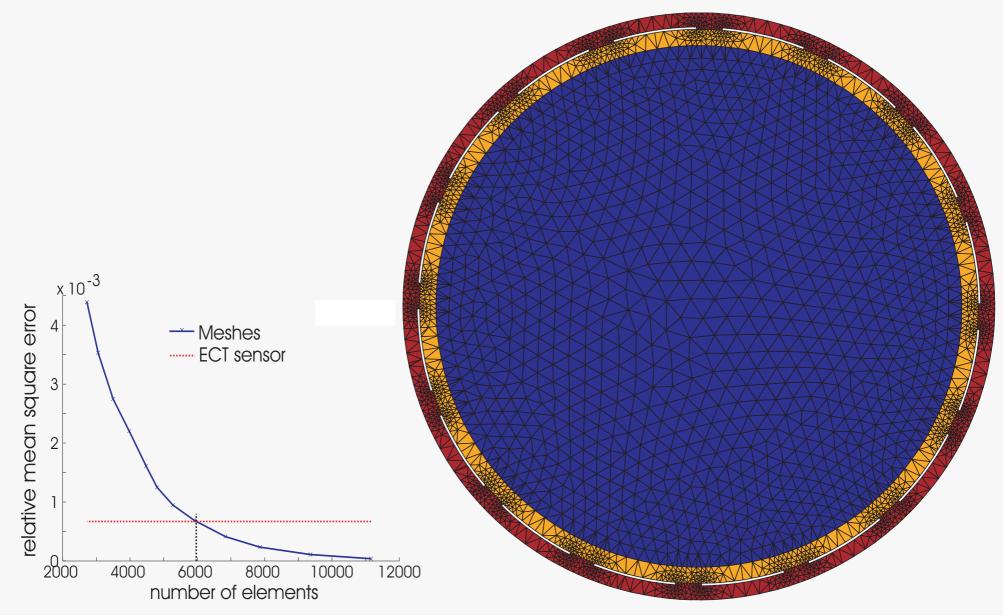
Forward map G

ECT

Data simulation requires $N_{\rm M} \sim 16$ solves of the Dirichlet (Neumann) BVP. SNR of 1:1000 provides 105 measurements + 5 per factor of 10 (further measurements give \sqrt{n} noise improvement). Correlation = 1-0.

Big names (Ohm, Kirchhoff, Laplace, Maxwell), but the biggest source of error!

$$\pi(\varepsilon \mid \mathbf{q}) \approx \pi_{\mathrm{n}}(\mathbf{q} - G(\varepsilon))\pi_{\mathrm{pr}}(\varepsilon)$$



Gaussian smoothness prior

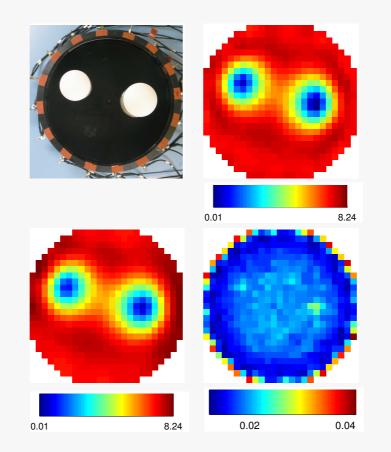


Figure 1: Results with the Gaussian smoothness MRF-prior. Top left: Photograph of the measurement setup. Top right: Maximum a posteriori estimate σ_{MAP} by the Gauss-Newton optimization algorithm. Bottom left and right: Posterior mean σ_{CM} and variance based on the MCMC simulation.

Material type prior

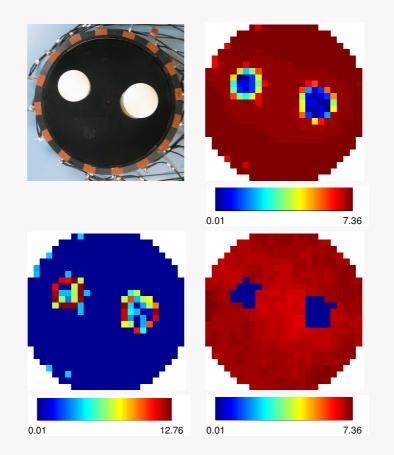
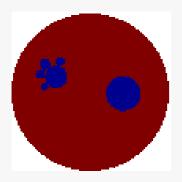


Figure 3: Results with the Material type MRF-prior. Top left: Photograph of the measurement setup. Top right: Posterior mean for the conductivity. Bottom left: Posterior variance of the conductivity. Bottom right: One sample from the posterior.

Circular inclusions prior



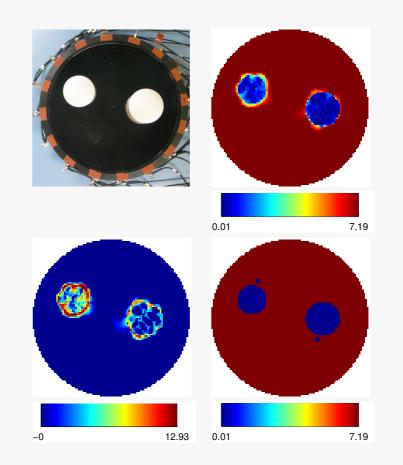
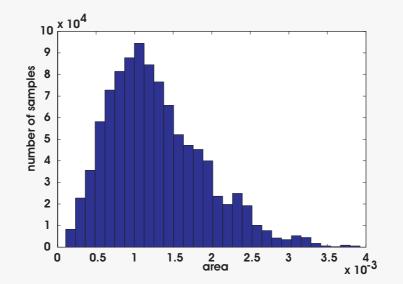


Figure 5: Results with the circle prior. Top left: Photograph of the measurement setup. Top right: Posterior mean for the conductivity. Bottom left: Posterior variance of the conductivity. Bottom right: Sample from the posterior.

Represent boundary by implicit RBF (or polygon)

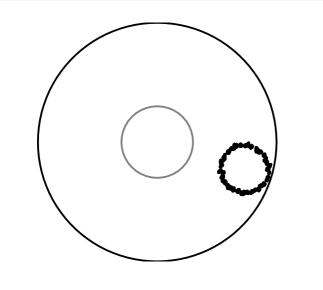
Represent boundary by N point implicit RBF x Naive prior uniform in node position: $\pi_{\rm pr}(x) = I$ (allowable contour) For large area $\pi_{\rm pr}(\text{area}) \propto (\text{area})^{-1/2}$

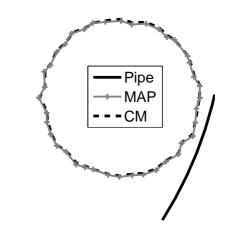


Specify a prior explicitly in terms of area $\Gamma(x)$ and circumference c(x)

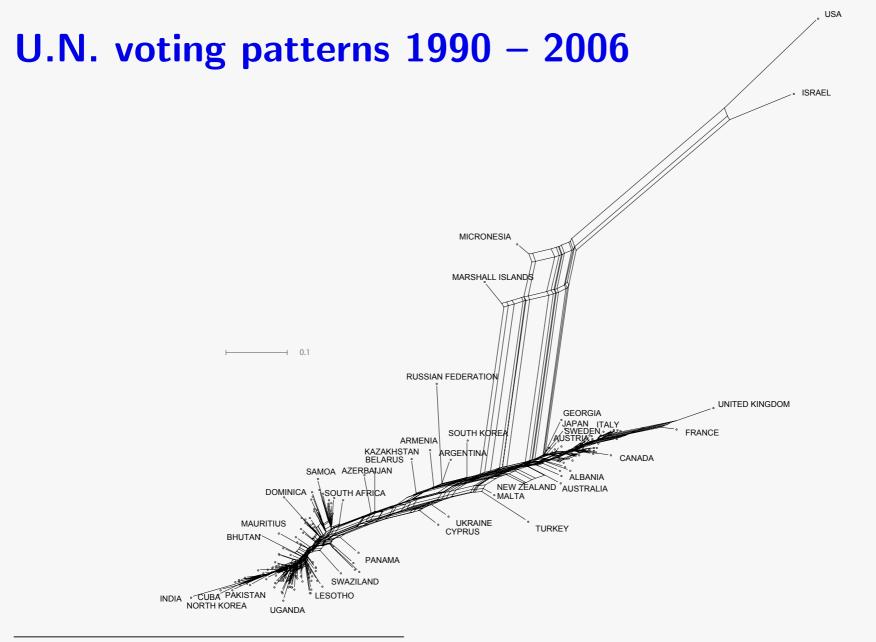
$$\pi(x) \propto \exp\left\{-\frac{1}{2\sigma_{\rm pr}^2} \left(\frac{c(x)}{2\sqrt{\Gamma(x)\pi}} - 1\right)\right\} I(x)$$

Posterior estimates (measured data)



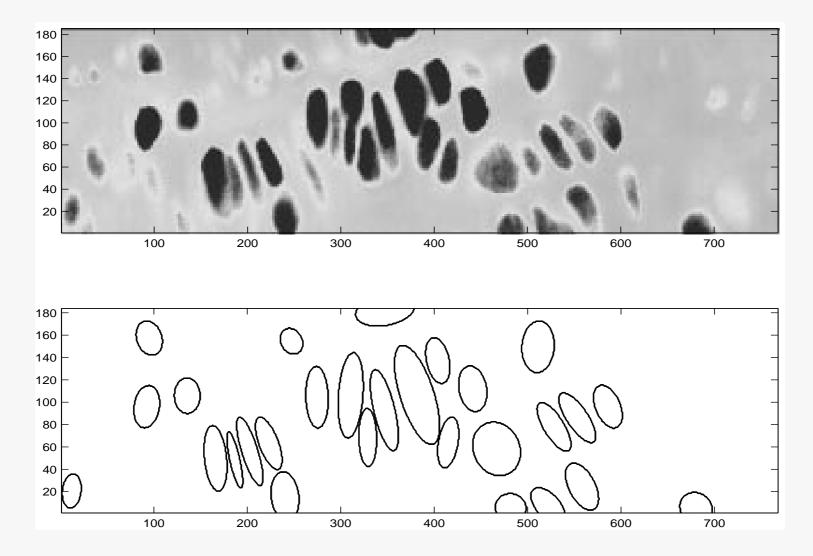


Quantities	true values	mean	standard deviation	IACT
x-coordinate of center [m]	_	3.71×10^{-2}	2.32×10^{-5}	5.89×10^{2}
y-coordinate of center [m]	_	-1.14×10^{-2}	3.02×10^{-5}	$4.65{\times}10^2$
Area Γ [m ²]	3.14×10^{-4}	3.13×10^{-4}	6.88×10^{-6}	1.10×10^3
Circumference c [m]	6.28×10^{-2}	6.24×10^{-2}	1.57×10^{-4}	$1.88{\times}10^3$
Log-likelihood	_	-46.10	1.72×10^{-1}	3.99×10^{2}



thanks to David Bryant

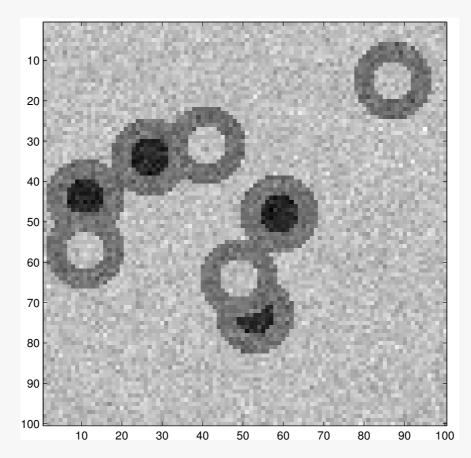
Marked Point Process



Fahimah Al-Awadhi, Christopher Jennison, Merrilee Hurn (Applied Statistics 53(1):31-49 2004)

Computing 3

Independent pixel-wise observations, with Gaussian noise, of 'cells'.



Count the number of good (black inside) and bad (white inside) cells in this (synthetic) image ... using an MCMC with a marked point process representation.