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Representations

Observation space is determined (finite set of numbers on a computer)

How to represent the unknown x is always a modelling choice

Spatially-distributed parameters often modelled using stochastic models from spatial statistics,

pattern theory, stochastic geometry :

Hurn Husby & Rue (2003) classified representations/priors as

• Low level: pixel based, linear space, often GMRF, can impose local properties

• Mid level: capture some global features, often good for geometric information, e.g. bound-

aries/areas

• High level: objects modelled directly, good for counting number of objects

Representation of knowledge in complex systems, Grenander & Miller JRSSB 1994



3 books



What questions are we trying to answer?PHYSICS 707 Inverse Problems, G.K. Nicholls and S.M. Tan, The University of Auckland 8-2

Figure 8.1 A binary image f and a noise-corrupted data set d obtained by adding samples of independent zero
mean Gaussian noise of standard deviation ¾ = 2 to the image.

The likelihood function for this problem is given by
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In order to ¯nd the posterior probability function, a prior probability distribution Pr (f) is required. This
encodes our state of knowledge about which images are (µa priori, without any data) more likely to occur.
For example, we might

1. have no prior prejudice whatsoever, i.e., Pr (f) = 2¡MN ; which is uniform on :

2. favour smooth images: since the material is likely to be in lumps, we regard reconstructions in which
the 1's and -1's separate out in blobs as a priori more probable. In this case, the binary Markov
random ¯eld of the last section might make a reasonable choice:

Pr (f) =
1

Z exp (¡2J#f) ; (8.2)

where J is our lumping parameter. When J = 0; there is no smoothing, whereas if J is large, we
favour a uniform image of a single colour. A model which favours \simple" reconstructions is called
parsimonious.

8.2.1 Uniform Prior

If we use the uniform prior, the posterior probability is equal to the likelihood. An implementation of the
Metropolis-Hastings Markov Chain Monte Carlo (MH MCMC) algorithm which draws samples from the
posterior probability involves the following steps:

1. Let Xn = f denote the current state of the Markov chain. A pixel with coordinates kl is selected at
random and the colour of the pixel is °ipped, producing a candidate state f 0 where

f 0ij =
½ ¡fkl if i = k and j = l

fij otherwise
(8.3)

The generation probability g (f 0jf) is zero if f 0 and f di®er by more than one pixel, and is equal to
1= (MN) if they di®er by exactly one pixel.

• “best” image

• How many blobs (when segmented into black and white)?

• What is the area of the blob ?

• Genus of the blob? (‘C’ or ‘O’)

A representation should make it easy to calculate information or quantities of interest.

If you want to know where the boundary is, then represent the boundary explicitly!



Coloured Continuum Triangulation

X =
∞⋃
i=0

{[0, 1]× [0, 1]}i , coloured

Geoff Nicholls, Bayesian image analysis with Markov chain Monte Carlo and colored continuum trian-

gulation models JRSSB 60:3 643-659 (1998)



Neolithic hill fort (Maori pa)
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A) data, 1746 resistivity readings, (B) posterior mean resistivity, (C) posterior edge length density,

(D1-3) samples from posterior



Automated inspection of BGAs by limited-angle X-ray



Low-level representation gives ‘coneheads’

Standard processing is:

• Produce pixel/voxel image

• Classify image

≥ 5% misclassification is no use for consumer electronics



CSG representation

a contains b a excludes b primitives



Electrical capacitance tomography

• Measure inter-electrode capacitances (1 fF to 5 pF)

q = Cv

• Non-invasively image permittivity ε

• Primarily interested in (2-dim) area of inclusion



ECT measurement system

Region of interest
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Resulting potential fields denoted um

Measure vector of (displacement) charges is qm =
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qm is a linear function of vm, hence

q = Cv

where C is the NE ×NE matrix of trans-capacitances.



Forward map G
ECT

∇ · (ε∇u) = 0 in Ω ∪ ΩE

u|∂Ωk
= vk k = 1, 2, . . . , NE, S

Measured charge related to fields by
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∫
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Data simulation requires NM ∼ 16 solves of the Dirichlet (Neumann) BVP.

SNR of 1:1000 provides 105 measurements + 5 per factor of 10 (further measurements give√
n noise improvement). Correlation = 1-0.

Big names (Ohm, Kirchhoff, Laplace, Maxwell), but the biggest source of error!

π(ε | q) ≈ πn(q−G(ε))πpr(ε)



FEM Mesh for ECT
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Gaussian smoothness prior

In the following figures, the sample based estimates are based on 12 parallel
realisations of the MCMC run. However, the convergence analysis figures
(i.e., autocorrelation and output trace) are based on one of the simulated
chains (realisation 12). Thus, the total number of draws for each case is 12
times the length of the log-posterior in the output image. The “parallized”
implementation is based on shell script that sends independent MatLab-
processes to each slave node of the Beowulf computer.

The results with Gaussian smoothness prior are shown in Figs. 1-2, the
results with material type prior are in Figs. 3-4, and the results with the
circle prior in Figs. 5-6

0.01 8.24

0.01 8.24 0.02 0.04

Figure 1: Results with the Gaussian smoothness MRF-prior. Top left: Photo-
graph of the measurement setup. Top right: Maximum a posteriori estimate
σMAP by the Gauss-Newton optimization algorithm. Bottom left and right:
Posterior mean σCM and variance based on the MCMC simulation.

7



Material type prior

0.01 7.36

0.01 12.76 0.01 7.36

Figure 3: Results with the Material type MRF-prior. Top left: Photograph
of the measurement setup. Top right: Posterior mean for the conductivity.
Bottom left: Posterior variance of the conductivity. Bottom right: One
sample from the posterior.

tation; Thus, I believe that the individual chains would eventually con-
verge to same estimates if we run the simulation long enough. Longer
test runs with simulated and real data will be carried out. After these
tests we can decide whether modifications for more efficient moves are
needed.

• Systematic errors: The EIT-system in Kuopio had some systematic
errors in calibration when the data was measured. Thus, the forward
model had to be calibrated against empty tank measurement in order
to get rid of the systematic errors. This may be bit questionable thing
to do but is acceptable for the purpose of this paper. In addition,
we are working on the system calibration, and some new data will be

9

Nicholls F 1998



Circular inclusions prior

0.01 7.19

−0 12.93 0.01 7.19

Figure 5: Results with the circle prior. Top left: Photograph of the mea-
surement setup. Top right: Posterior mean for the conductivity. Bottom
left: Posterior variance of the conductivity. Bottom right: Sample from the
posterior.
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Represent boundary by implicit RBF (or polygon)

Represent boundary by N point implicit RBF x

Naive prior uniform in node position: πpr(x) = I(allowable contour)

For large area πpr(area) ∝ (area)−1/2
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Specify a prior explicitly in terms of area Γ(x) and circumference c(x)

π(x) ∝ exp
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Posterior estimates (measured data)

 

 

Pipe
MAP
CM

Quantities true values mean standard deviation IACT

x-coordinate of center [m] – 3.71×10−2 2.32×10−5 5.89×102

y-coordinate of center [m] – -1.14×10−2 3.02×10−5 4.65×102

Area Γ [m2] 3.14×10−4 3.13×10−4 6.88×10−6 1.10×103

Circumference c [m] 6.28×10−2 6.24×10−2 1.57×10−4 1.88×103

Log-likelihood – -46.10 1.72×10−1 3.99×102



U.N. voting patterns 1990 – 2006
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Marked Point Process
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Figure 7: A second data slice (top); a sample from the posterior after 20,000 iterations (middle);

histogram of the cell attributes eccentricity, size and intensity (bottom).

automatic method would have been ideal, this is a small amount of interaction compared to the previous

approach of outlining the whole perimeter of each cell.

Given a sound initialisation, MCMC sampling provides a straightforward framework for estimating

the parameters of fitted cells and relating these to the phases in cell development. For example, we can

generate interval estimates of typical cell size or other population attributes. Figure 7 shows another

example of a data image, together with a sample image from the posterior distribution and histograms

of three cell attributes: the average eccentricity (ratio of minor to major axis length), average size and

average intensity in the cell population. Here, attribute values were recorded at regular intervals during

the MCMC run of 20,000 iterations.

21

Fahimah Al-Awadhi, Christopher Jennison, Merrilee Hurn (Applied Statistics 53(1):31-49 2004)



Computing 3

Independent pixel-wise observations, with Gaussian noise, of ‘cells’.
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Count the number of good (black inside) and bad (white inside) cells in this (synthetic) image

... using an MCMC with a marked point process representation.
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