
Inverse Problems

Course notes for ELEC 445 – Inverse Problems and Imaging

blurred direct inverse regularized inverse

Colin Fox, Geoff K. Nicholls, Sze M. Tan
2016 Edition

Contents

Contents iii

Preface v

1 Introduction to Inverse Problems 1

1.1 Examples of Inverse Problems . 1

1.2 Image Space, Forward Map, Data Space, and Noise 3

1.3 Ill-Posed and Ill-Conditioned . 4

1.4 Case Study in Image Deblurring . 6

1.5 What Went Wrong with the Inverse? . 16

2 Linear Transformations 19

2.1 Introduction . 19

2.2 A Linear Algebra Primer . 19

2.3 The Linear Inverse Problem . 24

2.4 Anatomy of a linear transformation . 26

2.5 Interpretation of the singular value decomposition of a matrix 31

2.6 Geometry of a linear transformation . 32

2.7 The Singular Value Decomposition in Model Fitting Problems 34

2.8 The Singular Value Decomposition in General 38

2.9 Classifying linear operators . 39

2.10 The effects of noise and small singular values 40

2.11 Continuous transformations . 41

3 Regularization Methods for Linear Inverse Problems 49

3.1 The data misfit and the solution semi-norms 49

3.2 Tikhonov regularization . 51

3.3 Truncated singular value decomposition (TSVD) 51

3.4 Filter factors . 52

3.5 Smoothness versus data-fitting in the deblurring example 54

3.6 Choosing the regularization parameter . 55

3.7 Three Pictorial Examples . 57

3.8 Deblurring with model error and measurement error 58

3.9 Why look beyond least-squares and regularization? 60

3.A Solving large systems of equations for regularization problems 63

iii

4 Elements of Probability and Statistics 71
4.1 The role of probability in inverse problems . 71
4.2 Random variables and their properties . 72
4.3 Some special probability distributions . 81
4.4 The central limit theorem . 81
4.5 Vector-valued random variables . 83
4.6 Linear transformations and correlations . 84
4.7 The multivariate Gaussian and its characteristic function 86
4.A Characteristic functions . 87
4.B Cumulants of a random variable . 89
4.C Exercises . 90

5 Bayesian statistical inference and parameter estimation 91
5.1 Forward and inverse probability . 91
5.2 Bayes’ theorem . 92
5.3 Multiple Observations . 95
5.4 Estimating a quantity with Gaussian measurement errors 97
5.5 Estimating radioactive source strength and half-life 100
5.6 Approximation of unimodal probability densities by Gaussians 103
5.7 Estimators and parameter estimation . 106
5.8 Optimal Estimators . 109
5.9 Data Modelling . 113
5.10 Least-Squares for Parameter Estimation . 114

6 Stochastic Simulation 127
6.1 Markov Chains . 127
6.2 Markov Chain Monte Carlo . 134

7 Sampled solutions to Inverse Problems 143
7.1 Introduction . 143
7.2 Recovering a binary matrix from noisy data 144
7.3 Recovering a binary matrix from its row and column sums 148
7.4 Markov Chain Monte Carlo on Continuous State Spaces 150
7.5 Estimating the parameters of a Gaussian Distribution 152
7.6 Estimating diffusivity D from solution of a partial differential equation 155
7.7 Optimization using Markov chain Monte Carlo 158

8 Output Analysis 163
8.1 Introduction . 163
8.2 Autocorrelation in equilibrium . 164
8.3 Calculating the integrated autocorrelation time 165
8.4 Initialization bias . 171
8.5 Sticking and multimodality . 172
8.6 Good habits . 173

iv

Preface

These notes accompany the lecture course ELEC 445 Inverse problems and Imaging taught
as part of the Electronics fourth year in the Physics Department at the University of Otago.

Inverse problems occur whenever data is observed that depends on unknown quantities that
we want to determine. That is just about every case where measurements are made, so the
study of inverse problems is often described as the ’theory of experiment’. The term ‘inverse
problem’ is usually reserved for cases where the deterministic mapping from unknowns to data
is a complex physical relationship and where direct inversion presents analytic difficulties. In
those cases, inverse problems are characterized by the solution being sensitive to errors in
the data and the physical model. Examples of inverse problems include the various modal-
ities of imaging from wave scattering used in non-invasive medical diagnostics, geophysical
prospecting, and industrial process monitoring.

The course and these notes focus on general methods for understanding and solving inverse
problems, and we will develop practical computational techniques for their solution. The
sensitivity to errors means that direct inversion is seldom practical. A classical solution (in
applied mathematics) is offered by regularization. Quantification of uncertainties can be
provided by a probabilistic model for the measurement process, with inversion achieved via
statistical inference.

We developed these notes around 1995 for the course 707 Inverse Problems in the Physics
Department at the University of Auckland. At that time Geoff and Colin worked in the
Mathematics Dept while Sze was in Physics. Since then, we have all left Auckland University;
Sze moved to a high-tech company in the Silicon Valley, Geoff moved to the Stats Lab in
Oxford, and Colin moved to Physics in Otago University to teach Electronics.

The online version of these notes seem to have been useful to a number of groups around the
world who want to learn about pratical methods for solving inverse problems. In 2005 these
notes ranked around 60 in Google’s list of downloads of mathematical texts online, and it has
been a big pleasure to subsequently meet people who have found the notes useful. We hope
that you also find something of value here.

CF, GKN, SMT

Dunedin, Oxford, Sunnyvale
October 2016

v

1

Introduction to Inverse Problems

1.1 Examples of Inverse Problems

The aim of collecting data is to gain meaningful information about a physical system or
phenomenon of interest. However, in many situations the quantities that we wish to determine
are different from the ones which we are able to measure, or have measured. If the measured
data depends, in some way, on the quantities we want, then the data at least contains
some information about those quantities. Starting with the data that we have measured,
the problem of trying to reconstruct the quantities that we really want is called an inverse

problem. Loosely speaking, we often say an inverse problem is where we measure an effect

and want to determine the cause.

Most science and engineering is data-driven in this way, though not always called an ‘inverse
problem’. Here we want to discuss the features and solution methods that are character-
istic for the problems most typically treated under the umbrella of inverse problems. The
quintessential setting is where the measurement process is a complex physical relationship,
and inversion presents analytic difficulties.

Here are some examples of inverse problems:

• Computer axial tomography. Given a patient, we wish to obtain transverse slices
through the body in vivo, and display pictures of these slices. It is known that the
X-rays are partially transmitted through the body, and that the opacity of various
internal structures to X-rays varies, so that a picture of the variation of the absorption
coefficient in the body would give a good picture. However, the only measurements that
one can make non-invasively is to shine X-rays through the patient and to measure the
total absorption along lines through the body. Given a collection of such line integrals
(the “data”), how do we reconstruct the absorption as a function of position in the
body (the “image”)?

• Model fitting. According to some theoretical model, the value of a quantity y depends
on another quantity x via an equation such as

y = a+ bx+ cx2 + dx3. (1.1)

Given a set of measured points (xi, yi) (which are the “data” in this problem), how do
we determine the values of a, b, c and d, and how confident are we of the result? In
this case the “image” which we wish to determine is the set of numbers a through d.
More generally, of course, the model can be more complicated and may depend on the

1

image in a non-linear way. Determining the half-life of a radioactive substance from
measurements of the times at which decay products are detected is an example of model
fitting.

• Deconvolution. Given a blurred photograph, or the result of passing a signal through
a medium which acts as a filter, how can we reconstruct an unblurred version of the
photograph, or the original signal before the filtering occurred? This type of prob-
lem is very important in designing computer modems, for example, because telephone
lines will distort signals passing through them, and it is necessary to compensate for
these distortions to recover the original signal. The problem of characterizing a lin-
ear, shift-invariant system by determining its impulse response is usually a problem in
deconvolution.

• Gridding or regridding. Suppose that we wish to make a contour map of the height
above sea-level of a region. This would be relatively easy if we had measurements of
height on a regular grid of points so that the height between these points can be inferred
by interpolation. In practice, we usually collect height data at irregularly spaced points
with variable density of points in different locations. How do we use such data to
reconstruct estimates of height on a regular grid? The problem of drawing isobars on
a weather map from isolated barometer readings is essentially the same.

• Radio-astronomical imaging. When using a multi-element interferometer as a radio
telescope, it turns out that the measured data is not the distribution of radio sources
in the sky (called the “sky brightness” function) but is rather the Fourier transform of
the sky brightness. It is not possible to measure the entire Fourier transform, but only
to sample this transform on a collection of irregular curves in Fourier space. From such
data, how is it possible to reconstruct the desired distribution of sky brightness?

• Navigation. When travelling in a boat or plane, it is useful to have an idea of the
current location in close to real time. This is often done by making a variety of mea-
surements, for example by using bearings to landmarks, stellar or satellite positions,
and also by considering one’s previous position and using information such as records of
speed and heading. How should all of these separate pieces of information be combined
together to give a coherent description of the vessel’s motion?

• Image analysis. How does one automatically count the number of stars in a photo-
graph of the sky, or the number of red blood cells in a microphotograph of a slide of a
blood sample? The objects will generally overlap or may be of a variety of shapes. In
these cases, the “data” is, typically, a picture of a scene containing the objects to be
counted and the inverse problem is to find the number of objects. Closely related is the
problem of image segmentation; A typical example is the problem of classifying regions
of a satellite image of the earth’s surface into regions of ocean, forest, agricultural land,
etc.

• Integral equations. Many physical processes can be written as integral equations, in-
cluding particle scattering and deformation of composite materials. Solution of integral
equations such as the Fredholm equation of the first kind

∫ s1

s0

k (x, s) f (s) ds = d (x) , x0 ≤ x ≤ x1, (1.2)

2

where the kernel k and the function d are given, presents an inverse problem for the
unknown function f . The special case where k (x, s) = u (x− s) (u is the unit step) is
the problem of numerical differentiation of the function d.

• Geophysics. Inverse problems have always played an important role in geophysics
as the interior of the Earth is not directly observable yet the surface manifestation of
waves that propagate through its interior are measurable. Using the measurements of
seismic waves to determine the location of an earthquake’s epicentre, or the density of
the rock through which the waves propagate, are typical of inverse problems in which
wave propagation is used to probe an object. Like many classes of inverse problems,
“inverse eigenvalue problems” were first investigated in geophysics when, in 1959, the
normal modes of vibration of the Earth were first recorded and the modal frequencies
and shapes were used to learn about the structure of the Earth in the large.

From this very short and incomplete list, it is apparent that the scope of inverse problem
theory is extensive and its applications can be found in many diverse fields. In this course,
we shall be discussing various general methods for approaching such problems.

In this introductory chapter, we shall consider one of these problems – deblurring of a pho-
tograph – and highlight the ways in which it is representative of other inverse problems.

1.2 Image Space, Forward Map, Data Space, and Noise

In accordance with convention, the collection of values that we want to reconstruct is referred
to as the image, even if those values do not represent a picture but are simply parameters
that define a model. The set of all images is called image space. We usually denote the image
by f .

The forward problem is the mapping from the image to the quantities that we are able to
measure. In most of the examples that we consider, the details of the forward problem is
given by some physical theory. For example, given the half-life of a radioactive substance,
nuclear physicists can tell us how to calculate the time at which we will detect the decay
products – at least in a statistical sense. The forward mapping may be linear or nonlinear
and is denoted by A.

In practice we are never able to make exact measurements and the data that we measure are
a corrupted version of the measurement quantities. Data space is the set of all possible data.
The corruption could be as small as the roundoff error produced by a computer representation
of the measurements, it could be intrinsic in the measurement process such as the twinkle
of star brightness produced by a turbulent atmosphere, or, more usually, the corruption is
due to the inherent errors in the measurement process. So, strictly, the forward process is a
mapping from the image to error-free data, d̄, and the data we actually measure, d, is the
corrupted form. The difference d̄− d is called the noise which we denote by n.

Thus the mapping from the image to actual data is given by the relation

d = A (f) + n.

The inverse problem is then the problem of finding the original image given the data and
knowledge of the forward problem.

3

For example, in the case of deblurring photographs, the “image” is the sharp photograph,
the “data” is the blurred photograph, and the forward problem is the blurring process. The
inverse problem is to find the sharp photograph (image) from the blurred photograph (data)
and knowledge of the blurring process.

1.3 Ill-Posed and Ill-Conditioned

There are several basic classifications of the forward problem. One classification that is useful
when using low-level image representations, such as pixel images, depends on whether the
image and data are functions of a continuous variable, or values at a finite set of discrete
points, i.e., are infinite-dimensional or finite-dimensional. These could be classified as:

data
∞-dim finite-dim

∞-dim data and image data discrete,
are functions reconstruct function image

image (idealized case)
finite-dim data is function, data and image

reconstruct discrete image discrete
(computed case)

The Fredholm equation 1.2 is an example of a ∞-dim–∞-dim forward problem since both
the functions y (x) and z (s) are defined on an interval (and require an infinite number of
values to define them). The model-fitting problem in equation 1.1 is a case where the image
is discrete (defined by the 4 values a, b, c, and d) and if there are a finite number of data
values it gives a discrete-discrete problem

In practice, we can only ever measure a finite number of data values and so assuming ∞-dim
data is always an idealization of an actual problem, though it is one that is commonly used
in Physics as it can lead to a simplified analysis. Ultimately, computer implementation is
necessarily finite dimensional, and for these purposes, each of idealized cases that have ∞-
dim image or data is approximated on the computer by a problem that has finite-dim data
and finite-dime image. This is not quite true for high-level representations; data is always
finite-dimensional but it is possible to compute with countably-infinite image representations.

Whichever class the mapping A belongs to, the inverse problem of solving

A (f) = d (1.3)

for f given d is called well-posed (by Hadamard in 1923) if:

(∃) a solution exists for any data d in data space,

(!) the solution is unique in image space, and

(C) the inverse mapping d 7→ f is continuous.

Condition (∃) holds when the range of the operator A is all f data space while condition (!)
also requires that A is one-to-one. Together, conditions (∃) and (!) are equivalent to saying
that the operator A has a well defined inverse A−1 with domain that is all of data space.

4

The requirement in condition (C) of continuous dependence of the solution image on the data
is a necessary but not sufficient condition for the stability of the solution.

In the case of a well-posed problem, relative error propagation from the data to the solution
is controlled by the condition number : if ∆d is a variation of d and ∆f the corresponding
variation of f , then

||∆f ||
||f || ≤ cond (A)

||∆d||
||d|| (1.4)

where (for linear forward problems)

cond (A) = ||A||
∣
∣
∣
∣A−1

∣
∣
∣
∣ .

If you have not met the concept of the norm of an linear operator (or transformation) before,
the formal definition is

||A|| = sup
x 6=0

||Ax||
||x|| .

The quantity on the right hand side is in terms of (usual) vector norms and measures by
how much the transformation “stretches” a vector x (in general, of course, A will also change
the direction of the vector, so that Ax and x do not point in the same “direction”). The
norm of the operator is found by considering the stretching factor for all non-zero vectors x,
and finding the largest such factor. (Technical note: Mathematically, we use the supremum
rather than the maximum operation in the definition in case the maximum is not achieved
by any non-zero vector x. In such cases there is a sequence of nonzero xn with the property
that ||Axn|| / ||xn|| increases asymptotically to ||A||).
Since the fractional error in f equals the condition number multiplied by the fractional error
in d, smaller values of cond(A) are desirable. In the linear case, cond(A) ≥ 1, and the case
cond(A) = 1 occurs when A is similar to a multiple of the identity. If cond(A) is not too
large, the problem 1.3 is said to be well-conditioned and the solution is stable with respect
to small variations of the data. Otherwise the problem is said to be ill-conditioned. It is
clear that the separation between well-conditioned and ill-conditioned problems is not very
sharp and that the concept of well-conditioned problem is more vague than the concept of
well-posed problem.

Hadamard went on to define a problem to be ill-posed if it does not satisfy all three conditions.
So an ill-posed problem is one where an inverse does not exist because the data is outside
the range of A, or the inverse is not unique because more than one image is mapped to the
same data, or because an arbitrarily small change in the data can cause an arbitrarily large
change in the image.

Hadamard believed that ill-posed problems were actually incorrectly-posed and “artificial”
in that they would not describe physical systems. That is not the case. Most correctly stated
inverse problems turn out to be ill-posed; In fact all of the examples in section 1.1 are examples
of actual problems in which the inverse problem is ill-posed or at least ill-conditioned. The
facts that CAT scans are performed successfully every day, or that oil reservoirs have been
found by seismic investigation, is evidence that meaningful information can be gained from
ill-posed inverse problems even though they cannot be strictly inverted.

The classical example of an ill-posed problem is a Fredholm integral equation of the first kind
with a square integrable (Hilbert-Schmidt) kernel

∫ b

a
k (x, s) f (s) ds = d (x) , a ≤ x ≤ b. (1.5)

5

If the solution f is perturbed by ∆f (s) = ǫ sin(2πps), p = 1, 2, . . . , ǫ = constant, then the
corresponding perturbation of the right-hand side d (x) is given by

∆d (x) = ǫ

∫ b

a
k (x, s) sin(2πps) ds, p = 1, 2, . . . ,

and due to the Riemann-Lebesgue lemma it follows that ∆d → 0 as p → ∞. Hence, the ratio
||∆f ||
||∆d|| can become arbitrarily large by choosing the integer p large enough1, thus showing that
1.5 is an ill-posed problem because it fails condition 3. In particular, this example illustrates
that Fredholm integral equations of the first kind with square integrable kernels are extremely
sensitive to high-frequency perturbations.

Strictly speaking, a problem that is ill-posed because it fails condition 3 must be infinite
dimensional – otherwise the ratio ||∆f ||

||∆d|| stays bounded, although it may become very large.
However, certain finite-dimensional discrete problems have properties very similar to these
ill-posed problems, such as being highly sensitive to high-frequency perturbations and so we
refer to them as (discrete) ill-posed problems.

1.4 Case Study in Image Deblurring

Let us consider the deconvolution or deblurring problem. The desired quantity in this case
is a sampled signal x [k] evaluated on a grid of regularly-spaced times or an image, x [k, l]
represented its intensity values on a regular array of pixels. The quantity we can measure is
a filtered version of this signal or a blurred version of the image. Given the measured data,
how do we reconstruct the image?

1.4.1 Modelling the forward problem

In this step we model how the image is turned into the measurements by the measurement
process. For simplicity, we initially consider a discrete one-dimensional “image” which is
simply a sequence of numbers representing intensity as a function of position. Suppose
first that the image consists of a single bright point in the centre of a dark background.
Mathematically, this is represented by a sequence δ [k] which is all zeros except at k = 0
where it takes on the value one. After the image is blurred, this single bright point becomes
spread out into a region called the point-spread function. The graph below shows an example
of a point spread function which is represented by the sequence h [k] .

1Students who have seen Hilbert-space methods for partial differential equations will recognize that the

forward operator in this case is a Hilbert-Schmidt integral operator and hence is “compact”. It follows that

its inverse cannot be bounded.

6

If the blurring is linear and spatially invariant, an image which consists of two unequally
bright points, one at k = −2 and the other at k = 3 which may be represented by the sequence
2δ [k + 2] + δ [k − 3] will be blurred into 2h [k + 2] + h [k − 3] as shown in the diagram below

We may readily generalize this blurring process to see that if the original image x [k] is a
linear combination of shifted δ sequences

x [k] =
∑

m

cmδ [k −m] , (1.6)

then the blurred image y [k] will be the same linear combination of shifted point-spread
functions, i.e.,

y [k] =
∑

m

cmh [k −m] . (1.7)

7

We now consider the problem of determining the coefficients cm. This is easy once we realize
that the δ sequence in (1.6) collapses the summation so that ck = x [k] . Thus we may write
the blurred image (1.7) as

y [k] =
∑

m

x [m]h [k −m] , (1.8)

which we recognize simply as the convolution of the sequences x and h denoted x ∗ h. Thus
the process of convolution corresponds to the simple idea of spatially-invariant blurring. In
Matlab, the function conv calculates the convolution of two sequences. For sequences of
finite length, the convolution of a sequence of length M and a sequence of length N yields a
sequence of length M +N − 1.

In two dimensions (e.g., for a photograph), images and point spread functions are represented
by sequences with two indices. For example x [m,n] denotes the intensity of the pixel in row
m and column n of an image. The convolutional relationship readily generalizes in this
situation to

y [k, l] =
∑

m

∑

n

x [m,n]h [k −m, l − n] . (1.9)

and again we write y = x ∗ h.

1.4.2 Transformation into Fourier space

The process of convolution of two sequences is a moderately complicated process involving
many additions and multiplications. Recall from the theory of Fourier transforms that we
defined the convolution of two functions of t as

(x ∗ h) (t) =
∫ ∞

−∞
x (τ)h (t− τ) dτ (1.10)

and we discovered that if we write the Fourier transforms of x (t) and h (t) as X (ν) and H (ν)
respectively, where for example

X (ν) =

∫ ∞

−∞
x (t) exp (−j2πνt) dt, (1.11)

then the Fourier transform of (x ∗ h) is simply the productX (ν)H (ν) . Thus the operation of
convolution in the t domain corresponds to multiplication of functions in the Fourier domain.
The mapping from the function x to the data is then d = Ax+n, where A is the convolution
Ax ≡ x ∗ h, and n is an unknown function representing noise. The Fourier transform of this
relation gives the relation between Fourier transforms:

D (ν) = X (ν)H (ν) +N (ν) . (1.12)

If the H (ν) is never zero, i.e., the forward problem is invertible, a straightforward inversion
scheme is to calculate an estimate of X by

X̂ (ν) =
D (ν)

H (ν)
(1.13)

and an estimate of the function x is x̂, the inverse Fourier transform of X̂.

We wish to see if we can carry out a similar process using sequences. Since we will want
to represent these sequences on a computer, we shall consider sequences of finite length N.
Given a sequence x [k] of length N, we shall assume that the index k ranges from 0 to N − 1.

8

The finite Fourier transform of a sequence of length N is defined to be another sequence of
length N. We shall use the convention of denoting the Fourier transform by the upper-case
letter corresponding to the lower-case letter of the original sequence. For example, the finite
Fourier transform X [r] of x [k] is defined by

X [r] =
N−1∑

k=0

x [k] exp

(

− j2πrk

N

)

for r = 0, 1, ..., N − 1. (1.14)

With this definition, we can recover x [k] from X [r] by the inverse finite Fourier transform

x [k] =
1

N

N−1∑

r=0

X [r] exp

(
j2πrk

N

)

for k = 0, 1, ..., N − 1. (1.15)

You should be able to show that these relationships are indeed inverses of each other by using
the fact that

N−1∑

k=0

exp

(
j2πrk

N

)

=

{
N if rmodN = 0
0 otherwise

, (1.16)

which may simply be demonstrated by summing the geometric series.

Note that the normalizations in front of the forward and inverse transforms are different.
The above conforms to the convention adopted in Matlab. An alternative convention which
has the advantage that X [0] is the average of the sequence x [k] is to place the factor 1/N
in front of the forward transform and have a factor of unity in the inverse transform. Yet
another convention which leads to a more symmetrical forward and inverse transform is to
place a factor of 1/

√
N in front of both transforms.

Consider now the product of two finite Fourier transforms:

X [r]H [r] =

N−1∑

k=0

x [k] exp

(

− j2πrk

N

)N−1∑

l=0

h [l] exp

(

− j2πrl

N

)

=

N−1∑

k=0

∑N−1−k
l=0 x [k] h [l] exp

(

− j2πr(k+l)
N

)

+
∑N−1

l=N−k x [k] h [l] exp
(

− j2πr(k+l)
N

)

=
N−1∑

k=0

∑N−1
m=k x [k] h [m− k] exp

(

− j2πrm
N

)

+
∑k−1

m=0 x [k]h [m− k +N] exp
(

− j2πrm
N

)

=

N−1∑

m=0

(
N−1∑

k=0

x [k] h [(m− k)modN]

)

exp

(

− j2πrm

N

)

where the substitutions l = m − k and l = m − k + N were used to go from the second to
third line. The term

(x⊛ h) [m] =
N−1∑

k=0

x [k] h [(m− k)modN]

is the circular convolution2 of the sequences x and h. Hence the product of finite Fourier
transforms is the finite Fourier transform of the circular convolution of the original sequences.

2The circular reference comes from the observation that the sum can be calculated as the sum of the

products of the two sequences wrapped onto a circle with h shifted round by the amount m with respect to x.

9

Note that the wrap-around nature of the sum in the circular convolution can be understood
in terms of the continuous Fourier transform. Since the finite Fourier transform corresponds
to the continuous Fourier transform when both the original function and the transform are
sampled and periodically repeated, the wrap-around comes from spatial aliasing resulting
from the sampling in (spatial) frequency. The circular convolution can be used to calculate
the usual convolution by first zero-padding the sequences x and h to twice their original
length to avoid the aliasing. Setting

xp [k] =

{
x [k] , k = 1, 2, . . . , N − 1
0, k = N,N + 1, . . . , 2N − 1

and similarly for hp we can see that

Xp [r]Hp [r] =

2N−1∑

m=0

(x ∗ h) [m] exp

(

− j2πrm

2N

)

is the finite Fourier transform (of length 2N) of the desired convolution. The convolution
may then be found by taking the inverse transform.

In summary, the mapping from the sequence x to the data is then d = Ax+n, where A is the
convolution with the point-spread function Ax ≡ x∗h, and n is the unknown noise sequence.
Equivalently, we have the the relation between finite Fourier transforms of the zero-padded
sequences:

Dp [r] = Xp [r]Hp [r] +Np [r] .

If the sequence Hp [r] is never zero then the forward problem is invertible and an inversion
scheme, analagous to the continuous case, is to calculate an estimate of Xp by

X̂p [r] =
Dp [r]

Hp [r]

and an estimate of the sequence x is the first half of the sequence x̂p calculated as the inverse
finite Fourier transform of X̂p. So, as in the continuous case, the forward mapping may be
inverted by division in the Fourier domain. This process is often called deconvolution as it
undoes the operation of the convolution with the point-spread function.

1.4.3 A Pictorial Example

In the following example, an image of size 256 × 256 pixels is blurred with a point spread
function which is a circle of radius

√
5 pixels. Random noise of r.m.s. amplitude about 1%

of the maximum value is added to the blurred image and deconvolution is carried out by
Fourier space division.

The original image has pixel values between 0 (background) and 255 (lettering). Usually the
background in images is dark and the features in the image are brighter. However, in the
following sequence of pictures, the value 0 is displayed as white so that the images are black
on a white background; This has been done for ease of viewing and photocopying only.

Further, for the particular image and point-spread function chosen, no spatial aliasing takes
place when the circular convolution is used to calculate the convolution representing the
blurring in the forward process. This is because the original image has the value 0 for a
distance around the edge of the image which is wider than

√
5 pixels, i.e., the half-width of

10

the point-spread function. Hence, again for ease of manipulation, the circular convolution is
used to model the forward problem – without initial zero-padding.

The following picture shows the blurred image with noise added.

Blurred image with noise

It happens in this case that the forward mapping is invertible, so we can calculate the inverse
image of the blurred image by division of the Fourier transforms. The result is shown in the
following picture.

11

Inverse calculated by Fourier division, i.e.,
unregularized solution.

Note that the direct inverse does not give a useful reconstruction. One of the methods
that we will investigate for reconstructing the image from noisey (and incomplete) data is
‘regularization’ in which we trade-off the accuracy of inverting the forward problem against a
requirement that the reconstruction be ‘smooth’. The details of that method are given later,
but for the moment it is sufficient to know that the trade-off is controlled by the parameter
λ; increasing λ makes the reconstruction smoother and the inversion more approximate. A
small amount of regularization is achieved by setting λ = 0.1 and the result is the following
picture.

12

Regularized inverse image: λ = 0.1

That reconstruction is effectively the same as the first given by exact inversion, which is the
case λ = 0 so there is no regularization. Greater regularizing is achieved by setting λ = 1,

13

Regularized inverse image: λ = 1

and more still with λ = 10.

Regularized inverse image: λ = 10

14

In terms of the L-curve, also covered later, λ = 10 is close to the optimum value. However,
a bit clearer reconstruction is achieved using λ = 100.

Regularized inverse image: λ = 100

As you can see, the resulting reconstruction is perfectly readable. Note that this image has
resulted from not inverting the forward mapping in the strict sense, but rather an approxima-
tion to the forward mapping. In doing so we have produced a result which is useful though
not correct.

Regularizing further by setting λ = 1000 smooths more than is necessary and results in the
following overly smooth reconstruction.

15

Regularized inverse image: λ = 1000

1.5 What Went Wrong with the Inverse?

By expressing the deblurring example of the previous section in the Fourier domain, the
forward and inverse mapping were shown to have the simple structure of componentwise
multiplication and division, respectively.

In the continuous image – continuous data case, the mapping from image to data was given
in equation 1.12 as D (ν) = X (ν)H (ν) +N (ν), so each Fourier component in the image is
multiplied by a (complex) scalar and is corrupted by (complex) scalar valued noise to give the
coefficient of a single Fourier component in the data. Similarly, the straightforward inverse
of equation 1.13, X̂ (ν) = D(ν)

H(ν) , is a scalar equation for each component. Combining these
two equations we find that

X̂ (ν) =
X (ν)H (ν) +N (ν)

H (ν)
= X (ν) +

N (ν)

H (ν)
,

i.e., the reconstruction is equal to the original image plus the term N(ν)
H(ν) . If |H (ν)| is small

enough (or worse still zero) that term will be large, in fact larger than X (ν), and that
component of the reconstruction will be principally determined by the unknown noise value
N (ν). For the case of blurring, H (ν) necessarily has arbitrarily small (or zero) values
whenever the point-spread function h (t) is square integrable since then, by Parseval’s identity,
so is H (ν) and hence H (ν) → 0 as ν → ∞. Thus, high frequency components in the
reconstruction will necessarily be determined by the details of the unknown noise. Note that
the forward mapping for blurring of a finite-sized picture is a Fredholm integral equation and
the observation of high-frequency difficulties in the inverse is exactly the same as reasoned in
section 1.3.

16

Thus, the continuous image – continuous data deblurring problem is ill-posed because if the
inverse exists it cannot be continuous. Of course, there will not be an inverse at all if H (ν)
is zero for any values of ν (the division by H (ν) is undefined) in which case the deblurring
problem is ill-posed because it fails the first condition for being well-posed. However, if H (ν)
does take the value zero for some ν, and we are able to make perfect noise-free measurements,
then the corresponding value of the data D (ν) is also zero and so we can find an inverse
image of the data by choosing any value we please for X (ν) . But then the inverse image is
certainly not unique and the problem fails the second condition for being well-posed.

The discrete-discrete deblurring example has many of the same properties. Once again the

inverse of the forward problem leads to a solution by Fourier division: X̂p [r] =
Dp[r]
Hp[r]

. In this

case the Fourier transform Hp [r] has a finite number of values and so, assuming the forward
problem is invertible, Hp [r] has a smallest non-zero value. However, if that value is small
enough, the corresponding component in the reconstruction, given by

X̂p [r] = Xp [r] +
Np [r]

Hp [r]
,

is dominated by the noise, and the data effectively give no information about the correspond-
ing component in the image.

In the presence of noise, it makes no difference whether a value of Hp [r], or H (ν) , is very
small or actually zero. In one case the forward mapping is invertible and in the other it is
not, yet the data are effectively the same. We must conclude that the issue of invertibility of
the forward problem, per se, is irrelevant when considering the practical inverse problem.

The blurring function used in the pictorial example was a circle of radius
√
5 pixels in a

256 × 256 pixels image. The magnitude of the finite Fourier transform is shown in the
following figure.

−100
−50

0
50

100

−100

−50

0

50

100

0

1000

2000

3000

4000

5000

6000

Magnitude of finite Fourier transform of the point-spread
function.

17

It is more usual to plot the singular values (see next chapter) of the forward map in descending
order, on a logarithmic scale, as in the following figure.

0 1 2 3 4 5 6 7

x 10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

index

si
ng

ul
ar

 v
al

ue
 (l

og
ar

ith
m

ic
 s

ca
le

)

Singular values of the forward map (which are the magnitude of
finite Fourier transform of the point-spread function) plotted in

descending order.

From the picture it can be seen the the Fourier transform does indeed have values that
are close to zero and so we expect that inverse will show the symptoms of being ill-posed.
The minimum and maximum magnitudes of the transform turn out to be 0.071 and 5355,
respectively. So the forward problem is invertible, and strictly well-posed, but it is not well-
conditioned with a condition number of 7.5× 104 compared to the noise level of about 1%.

18

2

Linear Transformations

2.1 Introduction

We were able to understand the limitations of exact inversion in the deblurring example
because, in the Fourier representation, the forward problem could be written as a set of
uncoupled scalar equations and therefore consisted of componentwise multiplication. Each
Fourier component in the image is multiplied by the corresponding value of the Fourier
transform of the point-spread function and then has noise added to give the data. The
‘inverse’ of the forward problem is then componentwise division of the Fourier transform of
the data by the appropriate scalar from the Fourier transform of the point-spread function;
problems arose when the divisor had small magnitude. We would like to have a similar
description of other linear inverse problems so that we can similarly predict when problems
will arise..

In general, a linear forward problem will not necessarily be shift-invariant and a Fourier
representation of image and data space will not lead to the forward mapping being a set
of uncoupled scalar equations. Usually the size of image and data spaces are different (an
extreme case is continuous-discrete problems) in which case the matrix representing the
forward mapping is not even square. Yet, remarkably, in all these cases there is an analogue
of Fourier space – given by the singular value decomposition (SVD) – in which the forward
operator reduces to componentwise scalar multiplication and the straightforward inverse is
by scalar division.

The simplest case to understand is when both image and data space are finite-dimensional,
i.e., for discrete-discrete problems. We will develop the SVD for that case first and then go
on to the case where image or data space is continuous.

2.2 A Linear Algebra Primer

Linear algebra forms the mathematical basis for the vector and matrix analysis that we use
to analyze linear inverse problems where both image and data space is discrete. Furthermore,
when viewed from a certain perspective to be explained in Section 2.11.1, it has a natural
generalization to functional analysis, which is the basic tool in analysis of continuous inverse
problems.

M -dimensional (real) vector space is denoted R
M and consists of the set of all ordered M -

19

tuples of real numbers, usually written as a column

u =

u1
u2
...

uM

so that the subscript denotes a row index. Addition of vectors is defined by (u+v)k = uk+vk
and scalar multiplication by (cu)k = cuk, c ∈ R. We will sometimes write the scalar to the
right of the vector: uc = cu. This will facilitate our “star” notation for resolutions of unity.
In fact, we can view the expression uc as the matrix product of the column vector u (M × 1
matrix) and the scalar c (1 × 1 matrix). This merely amounts to a change of point of view:
Rather than thinking of c as multiplying u to obtain cu, we can think of u as multiplying c
to get uc. The result is, of course, the same.

Similarly, the set of all column vectors with M complex entries is denoted by C
M . C

M is a
complex vector space, with vector addition and scalar multiplication defined exactly as for
R
M , the only difference being that now the scalar c may be complex. A subspace of a vector

space V is a subset S ⊂ V that is “closed” under vector addition and scalar multiplication.
That is, the sum of any two vectors in S also belongs S, as does any scalar multiple of any
vector in S. For example, any plane through the origin is a subspace of R3, whereas the
unit sphere is not. R

M is a subspace of CM , provided we use only real scalars in the scalar
multiplication. We therefore say that RM is a real subspace of CM . It often turns out that
even when analyzing real objects, complex methods are simpler than real methods. (For
example, the complex exponential form of Fourier series is formally simpler than the real
form using sines and cosines.)

A basis for CM is a collection of vectors {b1,b2, . . . ,bN} such that

1. any vector u ∈ C
M can be written as a linear combination of the bn’s, i.e., u =

∑

n cnbn,
and

2. there is just one set of coefficients {cn} for which this can be done.

The scalars cn are called the components of u with respect to the basis {bn}, and they
necessarily depend on the choice of basis. It can be shown that any basis for CM has exactly
M vectors, i.e., we must have N = M above. If N < M , then some vectors in C

M cannot be
expressed as linear combinations of the bn’s and we say that the collection {bn} is incomplete.
If N > M , then every vector can be expressed in an infinite number of different ways, hence
the cn’s are not unique. We then say that the collection {bn} is overcomplete. Condition (1)
and (2), above, are equivalent to demanding that the M vectors in a basis are complete. Of
course, not every collection of M vectors in C

M is a basis! In order to form a basis, a set of
M vectors must be linearly independent, which means that no vector in it can be expressed
as a linear combination of all the other vectors.

The standard basis {e1, e2, . . . , eM} in C
M (as well as in R

M) is defined by

(em)k = δmk ≡
{

1, k = m
0, k 6= m

.

in which δmk is the Kronecker delta.

20

2.2.1 Systems of linear equations

A function A from C
N to C

M is said to be linear if

A (cu+ v) = cA (u) +A (v) for all u,v ∈CN and all c∈C.
Thus A preserves the vector space structure of CN . When A is linear we write Au instead of
A (u) because linear operators act in a way similar to multiplication.

Now let {b1,b2, . . . ,bN} be a basis for C
N and {d1,d2, . . . ,dN} be a basis for C

M . Any
vector u ∈CN can be written as u =

∑N
n=0 unbn ({un} are the components of u in this basis)

and so

Au =A
N∑

n=0

unbn=
N∑

n=0

un (Abn) .

Since each Abn ∈ C
M it can be written as Abn =

∑M
m=0 amndm, for some complex numbers

amn, and therefore the components of Au with respect to the basis {dm} are

(Au)m =

N∑

n=0

amnun.

Hence the linear function A, given a particular choice of bases, can be represented by the
M × N matrix [amn] . Conversely, any M ×N matrix defines a linear operator from C

N to
C
M (or possibly R

N to R
M if the matrix is real). Note that the operator is basis independent

whereas matrices are basis dependent1.

The matrix is applied to a vector f in R
N by the process of matrix multiplication, e.g.,

d = Af . (2.1)

There are two common ways of interpreting this matrix product, each is useful in different
circumstances. The one which we shall most commonly think about is where the matrix A
is considered as a collection of n column vectors c1, c2, ..., cn written next to each other as
shown

A =

...
...

...
c1 c2 · · · cn
...

...
...

. (2.2)

The product Af may then be seen as the calculation of a linear combination of the vectors
c1, c2, ..., cn with the components of f giving the coefficients.

Af =

...
...

...
c1 c2 · · · cn
...

...
...

f1
f2
...
fn

(2.3)

= f1c1 + f2c2 + · · ·+ fncn. (2.4)

1A simple example of a basis-independent object is a vector which we think of as a geometric arrow.

The components of the vector depend on the basis we use to represent it, but the geometric object exists

independent of our choice of basis. Operations on the vector such as ‘double its length’ or ‘rotate about some

axis by 45 degrees’ are linear; their martix representation depends on the basis we choose to describe the

space.

21

In this interpretation of the matrix vector product, we highlight the fact that the image of
the linear transformation is spanned by the columns of the matrix A. When we now consider
the system of equations

Af = d (2.5)

we are asking how we can synthesize the vector d by taking the appropriate linear combination
(specified by the solution f) of the columns of the matrix A.

An alternative way of viewing the system of equations (2.5) is as a set of M simultaneous
equations in N unknowns. From this point of view, we focus on the rows rather than the
columns of A and write the matrix product as

· · · rT1 · · ·
· · · rT2 · · ·

...
· · · rTm · · ·

f =

d1
d2
...
dm

(2.6)

where rTi is the ith row of the matrix A. The ith simultaneous equation that is to be satisfied
is the inner product relationship rTi x =di which defines in hyperplane in R

n. The solution
process may be thought of as finding the intersection of all of these hyperplanes.

Traditionally, a system of equationsAf = d is said to be overdetermined if there is no solution
and underdetermined if there are infinitely many solutions. In the theory of inverse problems,
we are trying to reconstruct f from a measurement of d. As we shall see below, however, we
need to be concerned with more than just the system of equations for the specific measurement
result d. Due to measurement errors, the measured value of d is necessarily different from
Af , and it is necessary to obtain good reconstructions even in the presence of noise. These
considerations make it necessary to study the properties of the operator A in more detail.

2.2.2 Inner Products

The standard inner product in C
N generalizes the dot product in R

N and is defined as

〈u,v〉 =
N∑

n=1

ūnvn, u,v ∈CN

where un and vn are the components of u and v with respect to the standard basis and ūn
denotes the complex conjugate2 of un. When u and v are real vectors, this reduces to the
usual inner product in R

N . The standard inner product in C
N between u and v can also be

written in matrix form as uHv where the superscript H denotes the Hermitian conjugate of
the matrix. This reduces to uTv for RN . Using this definition, the norm of u defined by

||u|| =
√

〈u,u〉 =
(

N∑

n=1

|un|2
) 1

2

(2.7)

is real and nonnegative, which is sensible. Thus the inner-product and the norm it induces
satisfy the following important properties:

2We use the convention of conjugating the first variable which is common in physics. In mathematics

the convention is to conjugate the second variable. Our choice has the benefit of making the “star” operator

linear.

22

(P) Positivity: ||u|| > 0 for all u 6= 0 in C
N , and ||0|| = 0.

(H) Hermiticity: 〈u,v〉 = 〈v,u〉 for all u,v in C
N .

(L) Linearity: 〈u, cv +w〉 = c 〈u,v〉 + 〈u,w〉 for all u,v,w in C
N and c ∈ C.

Note that linearity only holds for the second argument. From (L) and (H) it follows that the
inner product is anti-linear in the first argument, i.e.

〈cu+w,v〉 = c̄ 〈u,v〉 + 〈w,v〉 .

Inner-products other than the standard one are often used, particularly when a non-standard
inner-product is more natural. Such a circumstance occurs when the different coordinates
correspond to quantities with different units or scales and we end up with the inner-product

〈u,v〉 =
N∑

n=1

µnūnvn,

where the µn are positive weights. This inner-product, like all others, also satisfies properties
(P), (H), and (L).

While the norm is defined in terms of the inner-product, it is possible to recover the inner-
product from the norm using the polarization identity :

〈u,v〉 = 1

4

(

||u+ v||2 − ||u− v||2
)

+
1

4i

(

||u+iv||2 − ||u−iv||2
)

. (2.8)

For real vectors, the second term is zero and the identity reduces to 〈u,v〉 = 1
4

(

||u+ v||2 − ||u− v||2
)

.

Vectors u,v in C
N are said to be orthogonal (w.r.t. the inner-product) if 〈u,v〉 = 0. A

basis {bn} is orthonormal (w.r.t. the inner-product) if 〈bk,bl〉 = δkl. Hence the concept
of orthogonality is relative to the choice of inner-product, as is the concept of length. The
standard inner-product has the useful property that the standard basis is orthonormal with
respect to that inner-product.

2.2.3 Resolution of the Identity

Given an orthonormal basis {bk}Nk=1 with respect to some inner product, the projection
of a vector v along the basis vector bk is given by:

bk 〈bk,v〉 (2.9)

This is a vector of length 〈bk,v〉 in the direction of the unit vector bk.

If the projections of v along all of the basis vectors are added together, the result must be
equal to v, since the basis vectors span the entire space, i.e.,

v =

N∑

k=1

bk 〈bk,v〉 (2.10)

23

For a basis {bk}Nk=1 which is not necessarily orthonormal, it is still possible to write any
vector v as a linear combination of the basis vectors bk, but the coefficients are not simply
given by inner products of the form 〈bk,v〉 .

If we now consider the standard inner product on C
N , the projection of v on bk may be

written as bk

(
bH
k v
)
, and

v =
N∑

k=1

bk

(
bH
k v
)
=

(
N∑

k=1

bk b
H
k

)

v. (2.11)

Since this is true for all vectors v,

I =

N∑

k=1

bk b
H
k (2.12)

where I is the N ×N identity matrix. Note that since bk is a column N -vector, bk b
H
k is an

N ×N matrix for each k, called the outer product of bk with itself. The representation of I
in terms of the outer products of vectors in an orthonormal basis is called a resolution of the

identity. The matrix bk b
H
k is called a projection operator along bk.

2.3 The Linear Inverse Problem

We consider several specific examples which may be regarded as prototypical of the linear
inverse problems which are encountered in practice. These should be kept in mind as we
discuss linear transformations more abstractly in the subsequent sections. Schematically,
all linear inverse problems may be represented by the block diagram shown. The input (or
“image”) f is the collection of quantities we wish to reconstruct and the output d are the
data we measure. In a linear inverse problem, the relationship between f and d is

d = Af + n (2.13)

whereA is a linear transformation, and n represents an additive noise process which prevents
us from knowing the noise-free data y = Af precisely. Different applications give rise to image
and data spaces of different sizes, but we shall wish to present a unified treatment of all of
these.

Linear
transformation

A

✲f + d

n

d0

✍✌
✎☞

✲ ✲

✻

2.3.1 Model Fitting to Data

In the simplest case, we measure a collection of data {(xi, yi)}mi=1 and attempt to fit a straight
line y = f0+ f1x to the data, where f1 is the gradient and f0 is the intercept. The dimension

24

of the “image” space is only two, but the data space is m dimensional. In terms of the general
picture, we have

y1
y2
...
ym

︸ ︷︷ ︸

d

=

1 x1
1 x2
...

...
1 xm

︸ ︷︷ ︸

A

(
f0
f1

)

︸ ︷︷ ︸

f

+

n1

n2
...

nm

︸ ︷︷ ︸

n

(2.14)

The noise n here represents the uncertainty in our measurements of yi. We normally would
make m ≫ 2 measurements, and find (unless we are very lucky) that the points do not lie
exactly on any straight line. Nevertheless, we usually “solve” for f0 and f1 by finding the
line which is best in the least-squares sense. i.e., we find f̂ so as to minimize the value of
∥
∥
∥d−Af̂

∥
∥
∥

2
. So long that m ≥ 2, and that x1 6= x2 there is a unique solution for f̂ .

Instead of a straight line, we may fit a polynomial of the form y = f0+f1x+ · · ·+fnx
n to the

data. Even more generally, we need not use powers of x, but may be given a collection of n
functions g1 (x) , g2 (x) , . . . , gn (x) and be required to fit y = f1g1 (x)+f2g2 (x)+· · ·+fngn (x) .
In this case, we write

y1
y2
...
ym

︸ ︷︷ ︸

d

=

g1 (x1) g2 (x1) . . . gn (x1)
g1 (x2) g2 (x2) . . . gn (x2)

...
...

. . .
...

g1 (xm) g2 (xm) . . . gn (xm)

︸ ︷︷ ︸

A

f1
f1
...
fn

︸ ︷︷ ︸

f

+

n1

n2
...

nm

︸ ︷︷ ︸

n

(2.15)

Once again, we would normally make m ≫ n measurements in order to find the values of
f1, . . . , fn. The situation in which there are much more data than “image” parameters to fit
is generally called “model-fitting”. It is usually the case in model fitting that the model is not
a perfect fit to the data for any choice of the parameters, and we have to use some criterion
such as least squares to obtain a “best” solution. It is also usually the case that there is a
unique best solution in the least squares sense. One can see how things can go wrong, if for
example the functions g1 (x) , . . . , gn (x) are poorly chosen. For example, if the functions are
not linearly independent, there may be an infinite number of choices of f , all of which give
the same value of Af . In such a situation, solutions will not be unique. In the following we
shall consider more precisely the conditions under which solutions exist and to what extent
they are unique.

2.3.2 Indirect Imaging

In model fitting, the size of the “image” is taken to be much smaller than the size of the
data. If this is not the case, the parameters of the model are not well-determined by the
data. For example, if we are fitting a parabola to data which consist only of two points,
there are an infinite number of parabolas which pass exactly through the data. There are
however problems in which the size of the image space is comparable to or larger than the
size of data space. This situation often occurs in practice because images are often functions
of continuous variables such as time or (physical) space, so that the dimensionality of image
space is infinite. On the other hand, only a finite number of data can be measured, so that
data space is necessarily finite dimensional. An example of a problem of this type is that of

25

image deconvolution discussed in the previous chapter. The true image is actually a function
defined on a plane and hence lies in an infinite dimensional space, but we made the space finite
dimensional by discretizing the image into pixels. As discussed previously, the data consist
of linear combinations of the values in the image. In the example we chose to discretize
the blurred picture (the data) so that it has the same number of points as the image. This
makes it convenient from the point of view of using discrete Fourier transforms, but there is
no fundamental reason for doing this. As a second example, consider again the problem of
X-ray tomography, in which line integrals through the patient are recorded at various angles
in order to reconstruct the distribution of absorption within the body. The dimension of
the image space is again infinite, but can be made finite by suitable discretizing the cross
sectional area of the patient. The dimension of the data space depends on the number of
angles used, and the number of points at which the X-ray intensity is measured.

The fineness of the discretization of the image is to some extent arbitrary, so long as it is
fine enough that details can be represented adequately. As we refine the discretization, the
number of image points increases, and at some stage, there will be an infinite number of
images which will all map to exactly the same data under the linear transformation. (This
will certainly happen once the number of image points exceeds the number of data points,
but it can also happen well before that). Choosing a good reconstruction from among the
infinity of possibilities then becomes an issue, since we would not like the appearance of the
solution to change markedly as the discretization is refined beyond a certain point.

We shall refer to problems in which the number of image points is comparable to or greater
than the number of data points as “indirect imaging.” The distinction between model fitting
and indirect imaging is qualitative rather than quantitative and we shall thus study them as
special cases of the linear inverse problem.

2.4 Anatomy of a linear transformation

One way to treat the system of equations

d = Af (2.16)

where A is rectangular (and hence certainly not invertible) is to consider the operator ATA
(or AAT) which is square and potentially invertible. This idea of analyzing the properties
of ATA (or AAT) in order to give information about A leads to a very important way of
characterizing the behaviour of any finite dimensional linear transformation called the singular
value decomposition. We shall investigate this in greater detail after a preliminary review of
the eigenspace properties of real symmetric matrices. The advantage of first considering
symmetric (and thus square) matrices is that the linear transformation defined by such a
matrix maps a space into itself, whereas the domain and range spaces of the transformation
defined by a rectangular matrix are different.

2.4.1 Eigenvalues and eigenvectors of real symmetric matrices

In elementary courses on linear algebra, it is shown that a real, symmetric (and hence square)
m × m matrix M always has real eigenvalues and the eigenvectors of such a matrix may
always be chosen to form an orthonormal basis of R

m. If the eigenvalues are denoted µi

and the corresponding eigenvectors are denoted ui, the statement that ui is an eigenvector

26

associated with eigenvalue µi may be written

Mui = uiµi. (2.17)

If we now write the column vectors u1, ...,um next to each other to form the square matrix

U =

...
...

...
u1 u2 · · · um
...

...
...

, (2.18)

the relations (2.17) for i = 1, ...,m may be written as

MU =

...
...

...
Mu1 Mu2 · · · Mum
...

...
...

=

...
...

...
µ1u1 µ2u2 · · · µmum
...

...
...

=

...
...

...
u1 u2 · · · um
...

...
...

µ1

µ2

. . .

µm

= UD, (2.19)

whereD is the diagonal matrix with the eigenvalues on the diagonal. SinceU is an orthogonal
matrix, it is invertible and so

M = UDU−1 = UDUT. (2.20)

Note that the identity U−1 = UT follows from the columns of U being orthonormal; such a
matrix is called unitary. The decomposition, in equation 2.20, of the original matrix M in
terms of its eigenvectors may also be written as

M =

m∑

k=1

µkuku
T
k (2.21)

in which we are highlighting the representation of M as the weighted sum of outer-products
of its eigenvectors. We can verify that the right hand side is indeed equal to M by considering
its action on the eigenvectors ui. Since these eigenvectors form a basis, a verification which
shows that they are transformed correctly ensures (by linearity) that all vectors are also
transformed correctly.

The decomposition (2.21) means that the action of the real symmetric matrix M on an input
vector x ∈Rm may be understood in terms of three steps:

1. It resolves the input vector along each of the eigenvectors uk, the component of the
input vector along the ith eigenvector being given by uT

k x,

2. The amount along the kth eigenvector is multiplied by the eigenvalue µk,

3. The product tells us how much of the kth eigenvector uk is present in the product Mx.

Thus, the eigenvectors ofM define a “privileged” basis in which the action ofM is particularly
simple. Each of the components of x along the m eigenvectors is stretched independently by
an amount given by the eigenvalue. Figure 2.1 is a schematic representation of the process.
Only two of the m orthogonal eigenvectors are shown.

27

u1u1

u2u2

x

Mx

uT
1 x

uT
2 x µ1u

T
1 x

µ2u
T
2 x

M

R
m

R
m

Figure 2.1: Effect of a real symmetric matrix M on a vector x.

2.4.2 Functions of a real symmetric matrix

Since a real symmetric matrix M may be written as in (2.20), it is easy to compute any power
of M

Mn =
(
UDUT

)n
= UDnUT, (2.22)

sinceUTU = UUT= I asU is unitary. SinceD is diagonal, raisingD to the nth power simply
raises each of its (diagonal) elements to the nth power. If we define arbitrary functions of a
matrix in terms of the associated power series, we see that

f (M) = Uf (D)UT (2.23)

=

m∑

k=1

f (µk)uku
T
k . (2.24)

In particular, the inverse of the matrix M is

M−1 =

m∑

k=1

1

µk
uku

T
k . (2.25)

The matrix is invertible provided that no eigenvalue is equal to zero. The eigenvectors of
M−1 are the same as those of M, only the eigenvalues are reciprocated. Each direction which
is stretched when M is applied contracted by M−1, and vice versa.

2.4.3 Singular value decomposition of a real rectangular matrix

Let us suppose that A ∈Rm×n is a real rectangular matrix which maps vectors in R
n to

vectors in R
m. We may consider the two square symmetric matrices ATA and AAT which

may be formed from A and which are of size n× n and m×m respectively.

Since each of these matrices are square and symmetric, we may obtain the eigenvectors
and eigenvalues of each. The eigenvectors may be chosen to form orthonormal bases of the
respective spaces. We note that each of the matrices is positive semidefinite, which means
that all their eigenvalues are non-negative. This is easy to see for if v is an eigenvector of
ATA, belonging to eigenvalue λ, then

ATAv =λv. (2.26)

28

Multiplying on the left by vT and grouping the terms,

(
vTAT

)
(Av)=λ

(
vTv

)
. (2.27)

On the left hand side we have a non-negative quantity, the square of the norm of Av. On the
right, vTv is positive and so λ must be non-negative.

Label the n orthonormal eigenvectors of ATA as vi with associated eigenvalues λi and assume
that we have sorted them so that

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. (2.28)

Similarly, label the m orthonormal eigenvectors of AAT as ui with associated eigenvalues µi

and sort them so that
µ1 ≥ µ2 ≥ · · · ≥ µm ≥ 0. (2.29)

Consider the first eigenvector v1 of ATA and suppose that λ1 is not equal to zero. The
vector Av1 is then non-zero. We wish to show that Av1 is in fact an eigenvector of AAT.
To check this, we notice that

(
AAT

)
(Av1) = A

(
ATA

)
v1 = λ1 (Av1) . (2.30)

This shows that Av1 is indeed an eigenvector of AAT which belongs to the eigenvalue λ1. If
we normalize Av1 to have unit length by forming

Av1

‖Av1‖
, (2.31)

this is a normalized eigenvector of AAT and so must be one of the ui mentioned above
provided that the eigenvalues of AAT are not degenerate.

Continuing the above argument, we see that each non-zero eigenvalue λi of A
TA must also be

an eigenvalue of AAT. A similar argument starting with an eigenvector ui of AAT belonging
to a non-zero eigenvalue µi shows that the vector A

Tu1/
∥
∥ATu1

∥
∥ is a normalized eigenvector

of ATA with the same eigenvalue.

The conclusion to the above is that the non-zero eigenvalues of ATA are the same as the non-
zero eigenvalues of AAT and vice versa. If there are r non-zero eigenvalues, this means that
λ1 = µ1, ..., λr = µr and that all subsequent eigenvalues must be zero, i.e., λr+1 = ... = λn = 0
and that µr+1 = ... = µm = 0.

It turns out to be possible to arrange that for all k = 1, ..., r,

uk =
Avk

‖Avk‖
and vk =

ATuk

‖ATuk‖
. (2.32)

This happens automatically if the non-zero eigenvalues of ATA andAAT are non-degenerate.
Even if there are degeneracies, it is possible to choose the appropriate linear combinations in
the degenerate eigenspaces so that these are true. The value of r is known as the rank of the
matrix A (or of the matrix AT). It should be clear that r ≤ m and r ≤ n.

The norms in (2.32) may be evaluated,

‖Avk‖2 = (Avk)
T (Avk) = vT

k

(
ATA

)
vk = λk, (2.33)

29

where the last equality holds because vk is an eigenvalue ofATA belonging to λk, and because
vk is normalized so that vT

k vk = 1. Similarly,
∥
∥ATuk

∥
∥2 = µk. Since λk = µk > 0, we may

define σk to be the square root of the eigenvalue and write

‖Avk‖ =
∥
∥ATuk

∥
∥ = σk =

√

λk =
√
µk, (2.34)

for k = 1, 2, ..., r. Equation (2.32) then takes the simple form

Avk = σkuk (2.35)

ATuk = σkvk. (2.36)

The effect of the linear transformation A on the unit vector vk ∈ R
n is to take it to the

vector σkuk ∈ R
m of length σk in the direction of the unit vector uk ∈ R

m. The effect of the
linear transformation AT on the unit vector uk ∈ R

m is to take it to the vector σkvk ∈ R
n

of length σk in the direction of the unit vector vk ∈ R
n.

On the other hand for k > r, the eigenvalue of ATA associated with vk is zero and so
ATAvk = 0. Premultiplying this by vT

k shows that ‖Avk‖ = 0 and hence that Avk = 0. We
thus have that

Avk = 0 for k = r + 1, ..., n (2.37)

and similarly,
ATuk = 0 for k = r + 1, ...,m. (2.38)

Equations (2.35) and (2.37) together describe how A acts on the vectors in the basis {vk}
for k = 1, ..., n. By linearity, any operator which has the same action as A on each of the
vectors of the basis must be the same as A. Thus we may write

A =

r∑

k=1

σkukv
T
k , (2.39)

and it is easy to check (using the orthonormality of the basis {vk}) that the right hand side
does have the same action as A on the basis.

Taking the transpose of (2.39) gives

AT=

r∑

k=1

σkvku
T
k (2.40)

and it is again easy to check that this is consistent with (2.36) and (2.38).

The orthonormal vectors {vk} are known as the right singular vectors, the vectors {uk} are
known as the left singular vectors, and the scalars {σk} are called the singular values of the
matrix A.

We may write the column vectors uk next to each other to form an orthogonal m×m matrix
U and stack the row vectors vT

k on top of each other to form the orthogonal n × n matrix
VT. The equation (2.39) may then be written in matrix form as

A = USVT

where S is an m × n matrix whose only non-zero elements are the first r entries on the
diagonal, i.e., skk = σk.

30

v1

v2

u2

u1

f

Af

vT
1 f

vT
2 f

σ1v
T
1 f

σ2v
T
2 f

A

R
n

R
m

Figure 2.2: Effect of a rectangular matrix A ∈ R
m×n on a vector f ∈ R

n.

2.5 Interpretation of the singular value decomposition of a
matrix

In this section, we discuss the interpretation of the singular value decomposition (2.39). When
the matrix A acts on a vector f , we may write the product as

Af =

r∑

k=1

ukσk
(
vT
k f
)
, (2.41)

this may again be understood as the sequence:

1. It resolves the input vector along each of the right singular vectors vk, the component
of the input vector along the kth singular vector being given by vT

k f ,

2. The amount along the kth direction is multiplied by the singular value σk,

3. The product tells us how much of the kth left singular vector uk is present in the product
Af .

In effect the decomposition shows how a complicated operation such as matrix multiplication
can be split into r independent multiplications, each of which takes a component along a
vector in R

n and converts it into a component along a vector in R
m. This result is all the

more remarkable since {vk}rk=1 can be extended to an orthonormal basis {vk}nk=1 for Rn and
{uk}rk=1 can be extended to an orthonormal basis {uk}mk=1 for R

m. The action of A on a
vector f is shown schematically in Figure 2.2. For convenience, we only show two of the n
dimensions in the domain and two of the m dimensions in the range. This figure is rather
similar to Figure 2.1, but notice that the bases in the two spaces are now different, even
though they can both be chosen to be orthonormal.

The action of the transpose of A can also be worked out using the singular value decompo-
sition. If y ∈Rm, we see that,

ATy =

r∑

k=1

vkσk
(
uT
k y
)
, (2.42)

31

AT

R
n

R
m

u1

u2

y

uT
1 y

uT
2 y

ATy

v1

v2

σ1u
T
1 y

σ2u
T
2 y

Figure 2.3: Effect of a rectangular matrix AT ∈ R
n×m on a vector y ∈ R

m.

which may be understood as the sequence:

1. Resolve the vector y along each of the left singular vectors uk, the component of the
input vector along the kth singular vector being given by uT

k y,

2. The amount along the kth direction is multiplied by the singular value σk,

3. The product tells us how much of the kth right singular vector vk is present in the
product ATy.

These steps are shown in Figure 2.3. Note that the singular values for AT are the same as
those for A.

2.6 Geometry of a linear transformation

Equations (2.35) and (2.38) tell us that the image of A is spanned by u1, ...,ur and the null
space of AT (i.e., the space which is mapped to zero under the action of AT) is spanned
by ur+1, ...,um. Together they span all of Rm, and we write R

m = image (A) ⊕ null
(
AT
)
.

Similarly, from equations (2.37) and (2.36), the image of AT is spanned by v1, ...,vr and
the null space of A is spanned by vr+1, ...,vn. Together they span all of Rn, and we write
R
n = image

(
AT
)
⊕ null (A) . The symbol ⊕ denotes a direct sum of the spaces. If we write

C = A ⊕ B where A, B and C are vector spaces, this means that any vector c ∈ C can be
written in a unique way as the sum of a vector a ∈ A and a vector b ∈ B. The above direct
sums are also orthogonal, so that the vectors a and b are at right angles to each other. The
dimensions satisfy dimC = dimA+ dimB.

It is convenient to visualize these relationships using the diagram of Figure 2.4. In the image
space R

n, there are r dimensions associated with the image of AT and n − r dimensions
associated with the null space of A. Since we cannot draw more than two dimensions on a
page, we represent each of these spaces by a single axis. Since the spaces are orthogonal,
the axes are drawn at right angles to each other. Similarly, in data space R

m, there are r
dimensions associated with the image of A and m − r dimensions associated with the null
space of AT. In the figure these are also represented schematically as two orthogonal axes.

32

A

R
n

R
m

{vr+1, . . . ,vn}

{v1, . . . ,vr}
{u1, . . . ,ur}

{ur+1, . . . ,um}

AT

image (A)

image
(
AT
)

null
(
AT
)

null (A)

Figure 2.4: The image and null spaces of A and AT for a linear transformation of rank r.

The action of the linear transformation A is to map non-zero vectors in the space image
(
AT
)

into non-zero vectors in the space image (A) . All vectors which are orthogonal to image
(
AT
)

(i.e., those orthogonal to every row of A) are necessarily in null (A) and are mapped to zero
under the action of A.

Similarly, the action of the linear transformation AT is to map non-zero vectors in the space
image (A) into non-zero vectors in the space image

(
AT
)
. All vectors which are orthogonal

to image (A) (i.e., those orthogonal to every column of A) are necessarily in null
(
AT
)
and

are mapped to zero under the action of AT.

Let us now see how the singular value decomposition is useful in revealing how a linear
transformation converts an “image” vector f into a “data” vector Af . Any image vector f
may be written as the sum of right singular vectors vk, the length of the component being
given by the projection along the singular vector,

f =

n∑

k=1

fkvk where fk = vT
k f . (2.43)

After this is converted into “data ” by multiplication by A, the result is

Af =

r∑

k=1

(σkfk)uk. (2.44)

Information about the projection of f along vk is “encoded” in the data as the component
along the direction uk. The size of the projection is multiplied by σk to give the coefficient of
uk, namely σkfk. The singular value is the factor which tells us by how much each component
defining the image is amplified or attenuated when it is converted into the data.

Notice that only the projections of the image f along the first r right singular vectors vk

play a role in determining the data Af . If r < n, this means that the data are “blind”
to certain aspects of the image: the data do not allow us to distinguish between images
which have the same projections along the first r right singular vectors. Such images will
look different, since they may differ in their projections along the remaining singular vectors.
Equivalently, we may add to an image any element of the null space of A and the data will

33

not be changed in any way. If we now think of solving the inverse problem of reconstructing
f from a measurement of d, it is clear that at best, those components of f along the first r
right singular vectors are determined by the data. However the data tell us nothing at all
about the components of f along the remaining n− r right singular vectors, and we have to
use some other means for determining these components.

The above indicates that by calculating and plotting the right singular vectors, we can get
an idea of what types of structure in the image will be visible in the data and also the types
of structure which are invisible in the data.

2.7 The Singular Value Decomposition in Model Fitting

Problems

In model-fitting problems, such as fitting of a straight line y = f0 + f1x to a collection of m
data points {(xk, yk)}mk=1 , the dimensionality of the image space is very low. The forward
problem is

y1
y2
...
ym

︸ ︷︷ ︸

d

=

1 x1
1 x2
...

...
1 xm

︸ ︷︷ ︸

A

(
f0
f1

)

︸ ︷︷ ︸

f

, (2.45)

so image space is two-dimensional (n = 2), while data space is m dimensional. For model-
fitting to give well-defined answers, the rank r of the matrix A is equal to n, so that the
image of A is a two-dimensional subspace of Rm. The data sets which lie in the image of A
are those for which all the points lie exactly on some straight line. For most data sets, the
points will not all lie on a straight line, and in these cases d /∈ image (A) . In the least-squares
approach, the model parameters f̂ are chosen so that the Af̂ is as close as possible to d, i.e.,

f̂ =argmin ‖d−Af‖2 (2.46)

Suppose we compute the singular value decomposition of A, i.e., we find the left singular
vectors {uk}mk=1 , the right singular vectors {vk}nk=1 and the singular values σk such that:

A =
r∑

k=1

σkukv
T
k (2.47)

Since {uk}mk=1 form a basis of data space, we may write the data d as a the linear combination:

d =

m∑

k=1

uk

(
uT
k d
)
. (2.48)

Then, given any f , we see that

‖d−Af‖2 =
∥
∥
∥
∥
∥

m∑

k=1

uk

(
uT
k d
)
−

r∑

k=1

σkuk

(
vT
k f
)

∥
∥
∥
∥
∥

2

(2.49)

=

∥
∥
∥
∥
∥

r∑

k=1

uk

{
uT
k d− σk

(
vT
k f
)}

+
m∑

k=r+1

uk

(
uT
k d
)

∥
∥
∥
∥
∥

2

. (2.50)

34

Af'

f'

A

R
m

image (A)

null
(
AT
)

v1

f1
v2

f0

d
u
T
1 d

σ1

u
T
2 d

σ2

rmin αrrmin

Figure 2.5: Geometry of a model-fitting problem

Using the theorem of Pythagorus (since the vectors {uk} are orthogonal),

‖d−Af‖2 =
r∑

k=1

∣
∣uT

k d− σk

(
vT
k f
)∣
∣
2
+

m∑

k=r+1

∣
∣uT

k d
∣
∣
2
. (2.51)

Choosing f̂ so as to minimize ‖d−Af‖2 is now straightforward. The second term on the
right-hand side is the square of the perpendicular distance from d to the image of A, and is
completely unaffected by the choice of f . The first term on the right hand side can be reduced
to zero (its minimum possible value) by choosing f̂ such that

vT
k f̂ =

uT
k d

σk
for k = 1, 2, . . . , r. (2.52)

Whether or not this completely determines f̂ depends on whether r = n or r < n. For model
fitting, r = n, and so the unique solution to the model fitting problem is:

f̂ =

n∑

k=1

vk

(

vT
k f̂
)

=

n∑

k=1

vk

(
uT
k d

σk

)

=

(
n∑

k=1

1

σk
vku

T
k

)

d. (2.53)

This process is illustrated for the problem of fitting a straight line in Figure 2.5. Note that the
two-dimensional image space is depicted in its entirety, but that image (A) , which is a two
dimensional subspace in data space, is only depicted schematically by a line. The other m−2
dimensions in data space are also depicted as a line perpendicular to image (A) . The data d
are shown as being slightly off image (A) due to noise. The reconstucted model parameters
f̂ are chosen so that Af̂ is as close as possible to d in data space. The components of f̂ along
the right singular vectors vk are given by

(
uT
k d
)
/σk as indicated by (2.53). The singular

vectors v1 and v2 are at right angles to each other, but may make an angle to the f0 and
f1 axes which represent the intercept and gradient of the fitted straight line, respectively.
The ellipse in image space depicts the uncertainty in the fitted parameter values, and will be
discussed in a subsequent section.

35

2.7.1 Relationship to the Moore-Penrose inverse

We have already seen the Moore-Penrose inverse in the context of least-squares data fitting.
In order to minimize the misfit C = ‖d−Af‖2 , we may write

C = ‖d−Af‖2 =
m∑

k=1

(

dk −
n∑

l=1

aklfl

)2

(2.54)

Then

∂C

∂fi
=

m∑

k=1

2

(

dk −
n∑

l=1

aklfl

)

(−aki) = 0 for i = 1, . . . , n (2.55)

for an extremum. This may be written as

n∑

l=1

(
m∑

k=1

akiakl

)

fl =

m∑

k=1

akidk, (2.56)

which in matrix form is
(
ATA

)
f = ATd. (2.57)

These are known as the normal equations of the least-squares problem. We obtain a unique
solution provided that ATA is invertible, and find the best fit parameters f̂ using

f̂ =
(
ATA

)−1
ATd (2.58)

The matrix
(
ATA

)−1
AT is known as the Moore-Penrose inverse of A.

It is easy to relate this to the singular-value decomposition. Using (2.39) and (2.40),

ATA =

(
r∑

k=1

σkvku
T
k

)(
r∑

l=1

σlulv
T
l

)

=

r∑

k=1

r∑

l=1

σkσlvk

(
uT
k ul

)
vT
l =

r∑

k=1

σ2
kvkv

T
k (2.59)

since uT
k ul = δkl. So

{
σ2
k

}r

k=1
are the nonzero eigenvalues of ATA. Since ATA is an n × n

matrix, it is invertible iff r = n. If the matrix is invertible, then

(
ATA

)−1
=

r∑

k=1

1

σ2
k

vkv
T
k , (2.60)

and
(
ATA

)−1
AT =

(
r∑

k=1

1

σ2
k

vkv
T
k

)(
r∑

l=1

σlvlu
T
l

)

=

r∑

k=1

1

σk
vku

T
k (2.61)

Comparing this with (2.53) shows that the least squares solution as calculated using the
singular value decomposition is identical to that using the Moore Penrose inverse.

2.7.2 Effects of Noise on Model Parameter Estimates

It is instructive to consider how well the model parameters f̂ are determined in a least squares
fitting procedure. The method is based on the idea that the value of ‖d−Af‖2 is a measure

36

of how unlikely f is when the measured data are d. The “best” parameter estimate f̂ is thus
the one which miimizes ‖d−Af‖2 , i.e.,

∥
∥
∥d−Af̂

∥
∥
∥

2
= min

f∈Rn

∥
∥
∥d−Af̂

∥
∥
∥

2
= r2min (2.62)

where rmin is the distance between the data d and the image of A, (in which the data should
lie, if noise were absent). The value of rmin allows us to estimate the amount of noise likely
to be present. In order to get some idea of how confident we are about f̂ , we consider the set
of probable f values for the given data and noise level. This is known as the “feasible set”,

F =
{

f : ‖d−Af‖2 ≤ αr2min

}

, (2.63)

where α is chosen according to the confidence level required. We shall show that this set is
an ellipse in image space centred about f̂ as shown in Figure.2.5.

Using the singular value decomposition of A, we find from (2.51) that

‖d−Af‖2 =
r∑

k=1

∣
∣uT

k d− σk

(
vT
k f
)∣
∣
2
+ r2min (2.64)

Substituting the values of vT
k f̂ from (2.52),

‖d−Af‖2 = r2min +

r∑

k=1

∣
∣
∣σk

(

vT
k f̂
)

−σk

(
vT
k f
)∣∣
∣

2

= r2min +

r∑

k=1

σ2
k

∣
∣
∣vT

k

(

f − f̂
)∣
∣
∣

2
(2.65)

From the definition of the set F, we want those f which satisfy

r∑

k=1

σ2
k

∣
∣
∣vT

k

(

f − f̂
)∣
∣
∣

2
≤ (α− 1) r2min (2.66)

The boundary of this set is an ellipse centred at f̂ with principal axes aligned with the singular
vectors vk. The length of the k’th principal semi-axis is

rmin

√
α− 1

σk
, (2.67)

from which it is apparent that we are less confident about the parameters along the directions
corresponding to small singular values.

As is apparent from Figure 2.5, the independent uncertainties along the singular vector di-
rections vk translate into correlated uncertaities along the axes f0 and f1 of the estimated
parameters. We shall later consider in more detail how to quantify such correlated uncer-
tainties which arise from parameter fitting.

37

2.8 The Singular Value Decomposition in General

As the number n of parameters in the model becomes large, it becomes difficult to ensure that
they are all independent. Once there are dependent parameters, it becomes possible to achieve
the same data vector from more than one set of parameters. Formally, the forward map is
not one-one and ∃f1, f2 such that Af1 = Af2, but f1 6= f2. As n becomes large, the problem
of model fitting merges into that of indirect imaging. In the regime of indirect imaging, the
number of points in image space is chosen to be so large that it can adequately represent the
object of interest. Since there are now many images which map to the same data, it becomes
necessary to choose from among them using an additional criterion of optimality.

In terms of the singular value decomposition, the rank r of the forward map A is less than
n when the parameters of the model are not independent. This means that the null space
of A contains some non-zero vectors. In fact, all vectors which are linear combinations of
vr+1, . . . ,vn are in the null space of A, so that

A (cr+1vr+1 + · · ·+ cnvn) = 0 (2.68)

for every choice of coefficients cr+1, . . . , cn.

Let us now consider what happens if we try to use the principle of least squares to reconstruct
the image, when r < n. For measured data d, and a trial image f , (2.51) states that

‖d−Af‖2 =
r∑

k=1

∣
∣uT

k d− σk

(
vT
k f
)∣
∣
2
+

m∑

k=r+1

∣
∣uT

k d
∣
∣
2
. (2.69)

In order to minimize ‖d−Af‖2 over all possible f , the best that we can do is to ensure that
the first term on the right hand side is equal to zero, i.e., that

vT
k f =

uT
k d

σk
for k = 1, 2, . . . , r. (2.70)

If r = n, this completely defines f , but if r < n, we see that only the projections of f along
the first r right singular vectors v1, . . . ,vr are determined. The projections on the remaining
n− r are completely arbitrary. Thus, instead of a single “best” solution f̂ , all images of the
form:

r∑

k=1

vk

(
uT
k d

σk

)

+ cr+1vr+1 + · · ·+ cnvn (2.71)

for every choice of coefficients cr+1, . . . , cn will give the same minimum value for ‖d−Af‖2 .
Needless to say, if some of the arbitrary coefficients are large, the reconstructed image will
look terrible. As mentioned above, we need to select the arbitrary coefficients according to
some other critereon of optimality, because the data do not determine them at all.

The situation is depicted schematically in Figure 2.6. If r < m, it is very likely that noise
will cause the data d to lie outside the image of A. If y is the point which is closest to
d in image (A) , we find that an infinite number of images f map to the point d. All such
images differ by some vector in null (A) , and so the set S in image space which maps to y is
represented schematically by a line parallel to the subspace null (A) . When we include the
uncertainty in d, as represented by the m-dimensional sphere about d, we are led to consider
the feasible set F (as defined by (2.63)) which maps to the intersection of the sphere and

38

A

R
n

R
m

image (A)

image
(
AT
)

null
(
AT
)

null (A)

y

d

S

F

Figure 2.6: Geometry of a linear inverse problem.

image (A) . In the image space, the feasible set is represented by a strip as shown. Although
feasible in the sense of fitting the data to some specified precision, most of the images in
F have wildly oscillatory and non-physical properties (e.g., negative intensities, etc.) The
essential goal of regularization methods to be discussed in the next chapter is to choose a
“reasonable” solution within the feasible set.

2.9 Classifying linear operators

In the theory of inverse problems it is useful to classify operators A according to whether the
system of equations Af = d has solutions for various values of d.

1. If the image of the operator A has smaller dimension than the data space, i.e., if r < m,
there are vectors d ∈Rm which lie outside the range of A. This means that for some
possible d, the equations Af = d have no solution and it is necessary to use some
condition such as least-squares to select a vector f̂ which minimizes the discrepancy
between Af and d. Whether or not this least-squares solution is unique or not depends
on the next condition.

2. If the image of the operator A has smaller dimension than the image space, i.e., if
r < n, then there are an infinite number of vectors x all of which map under A to
the same vector d. This means that for some choices of d, the equations Af = d have
infinitely many solutions. Whether or not solutions exist for all values of d depends on
the previous condition.

3. The only situation in which Af = d has a unique solution for every d is if r = m = n
so that the matrix A is square and invertible. This situation almost never holds in
practice and it is almost always a bad idea to try to force an inverse problem into a
form with a square invertible matrix with a view of solving the problem by a solution of
these equations. This reasons for this should become clearer in the following discussions.

Whenever the second condition holds, it is necessary to use additional information over and
above the data collected in order to select a good reconstruction from among the possible

39

reconstructions. One way of doing this is by using the process of regularization which we
shall examine in more detail later. In practice, it is often the case that both the first two
conditions hold and r is strictly less than both m and n. When this is the case, there is no
solution to Af = d for some d while there are infinitely many solutions for other possible d.
If there is no solution for some d, it makes sense to find f to minimize ‖d−Af‖2 . It turns
out that this minimization gives a unique f if r = n but there are an infinity of vectors all of
which give exactly the same minimum norm if r < n.

2.10 The effects of noise and small singular values

In the theory discussed so far, we have drawn a sharp distinction between the eigenvalues of
ATA which are non-zero and those which are zero. Indeed the rank r of A may be defined
as the number of non-zero eigenvalues of ATA. In practice of course, when the eigenvalues of
ATA are sorted in decreasing order, there is a smooth transition from the large eigenvalues
through the small eigenvalues to the tiny eigenvalues and the actual rank is always equal to
the smaller of m or n. A more useful concept is the effective rank, which depends on the
threshold below which we consider the eigenvalue (or the corresponding singular value) to be
negligible.

For typical measurement processes, large or slowly-varying portions in the image are well-
represented in the data while structures on fine scales or with high frequency components
tend to be poorly represented. This is because measurements can usually only be made with
a certain spatial or temporal resolution. For example, if we are taking a photograph of an
object with visible light, structures on the object with a scale smaller than the wavelength
are invisible. The singular vectors in image space associated with the large singular values
for such an operator will tend to be smooth, while those associated with the small singular
values will tend to be highly irregular or oscillatory.

In order to understand how the small singular values affect the reconstruction process, we
consider a simple model for the measurement uncertainty or noise that is always present in
data. Let us suppose that the measured data d may be written as the sum of the transformed
image y = Af and a noise vector n so that

d = Af + n. (2.72)

The vector f represents the true underlying image and y is the data that would have been
obtained in the absence of noise. Neither of these quantities is known in practice, but the
aim of reconstruction is to find a vector approximating to f . Substituting the singular-value
decomposition of A into this yields

d =

(
n∑

k=1

σkukv
T
k

)

f + n (2.73)

where the rank has been taken to be n, the size of the image space (assumed to be smaller
than m). The forward mapping is strictly 1-1, and so there is a unique least-squares solution
which we have seen is given by:

f̂ =

n∑

k=1

(
uT
k d

σk

)

vk. (2.74)

40

Substituting the expansion (2.73) gives

f̂ =
n∑

k=1

(

vT
k f+

uT
k n

σk

)

vk (2.75)

= f+
n∑

k=1

(
uT
k n
)

σk
vk (2.76)

where we have made use of the fact that the {vk} form a basis for R
n. We see that the

reconstruction is the sum of the true image and terms due to the noise. The error term along
the direction of vk in image space arises from the component of the noise in the direction of
uk in data space, divided by the singular value σk.

If we now suppose that some of the singular values σk are small, this division will give a very
large random component, often completely swamping the component of f in that direction.
Another way of thinking about this is to see that the small singular values correspond to
directions in image space for which the data contain very little information about the image.
In attempting to reconstruct those aspects of f which lie along these directions, we have to
amplify the small signal buried in the data by dividing by the small singular value. Such a
scheme is risky because the noise which is inevitably present in the data is also going to be
amplified by a large factor, corrupting the reconstruction.

Thus when there are small singular values, the least squares method can give bad reconstruc-
tions. It is better to consider small singular values as being effectively zero, and to regard
the components along such directions as being free parameters which are not determined by
the data.

When the singular values of the measurement operator A are ranked in non-increasing order,
the rate at which they decrease with index gives valuable information about how much we
can hope to reconstruct from data taken using that measurement process for a given amount
of noise in the data. The more rapid is the decrease, the less we can reconstruct reliably for a
given noise level. Equivalently, in order to get good reconstructions when the singular values
decrease rapidly, an extremely high signal-to-noise ratio in the data is required.

2.11 Continuous transformations

Our analysis of the forward map A via the SVD required that both image space and data
space to be finite dimensional so the A is represented by a m× n matrix. When one or both
spaces are continuous we can still perform a singular-value decomposition with the aid of a
little more mathematical machinery, as presented in the next section. We will only deal fully
with the case where just one of the spaces is continuous and investigate some of the issues
for the continuous-continuous problem.in an assignment.

We deal with continuous spaces by first considering how the ideas of matrices may be ex-
tended to infinite dimensional spaces and then show how to construct the matrix (conjugate)
transpose so that we are able to form the analogs ofATA andAAT. Both these constructions
are achieved by using the “star” operator defined in the next section.

41

2.11.1 Adjoint operators and the star notation

Adjoints of Operators

One of the most powerful and pervasive concepts in linear algebra is the concept of adjoints.
Its generalization to function spaces will allow the use of matrix notation for continuous-
discrete and continuous-continuous forward operators.

For fixed inner-products in C
N and C

M , the adjoint of a linear operator F : CN → C
M is a

another linear operator

F ∗ : CM → C
N

satisfying the relation

〈u, F ∗v〉 = 〈Fu,v〉 , for all u ∈CN ,v ∈CM . (2.77)

Note that the first inner-product is in C
N while the second is in C

M . Strictly, equation 2.77
is not a definition of F ∗ as it is actually a (non-trivial) consequence of the properties of
inner-products that F ∗ must exist and be unique.

A concrete picture of adjoints can be gained by choosing bases {b1,b2, . . . ,bN} of CN and
{d1,d2, . . . ,dM} of CM which are orthonormal with respect to the respective inner-products.
Recall that the operator F is represented by the M ×N matrix [Fmn] and F ∗ is represented
by the N ×M matrix [(F ∗)nm]. The relationship between these two matrices can be found
by considering the defining expressions

Fbn =

M∑

m=0

dmFmn, F ∗dm =

N∑

n=0

bn (F
∗)nm .

Since both bases are orthonormal, the inner-product of both sides of the first equation with
dk, and the inner-product of both sides of the second equation with bl gives

〈dk, Fbn〉 = Fkn, 〈bl, F
∗dm〉 = (F ∗)lm .

Setting k = m and l = n and using the Hermiticity property of the inner-product,

(F ∗)nm = 〈Fbn,dm〉 = 〈dm, Fbn〉 = Fmn.

Hence the matrix [(F ∗)nm] representing F ∗ is the complex conjugate of the transpose3 of the
matrix [Fmn] representing F . So a simple way of thinking of the adjoint operator is to think
of the conjugate transpose of the representing matrix. In the general case of non-orthonormal
bases, the relationship between matrices is more complicated. However we will typically only
be considering orthonormal bases and so the simple picture is sufficient.

Adjoints of Vectors

The notion of the adjoint also applies to vectors when we associate the vector with its natural
operation as a matrix. Think of the vector u ∈CN as a simple operator that takes a complex
number and produces a vector, i.e.,

u :C → C
N ,

3The conjugate transpose is also called the Hermitian conjugate.

42

defined in the obvious way: for c ∈ C,

uc = cu.

The left-hand side describes u acting on c while the right-hand side defines the result and is
just the scalar multiplication of u by c.

Then the adjoint of u is

u∗:CN → C

defined by equation 2.77, which implies4 that for v ∈C
N

u∗v = 〈u,v〉

So u∗ is the operator that takes the inner product with u, or equivalently, is the process of
multiplying by the conjugate transpose of the representation of the vector. So, again, the
adjoint may be thought of as the conjugate transpose. Since u is represented by a column
vector, u∗ is a row vector.

In the Physics literature another notation is often used in which one writes

u∗ as 〈u| (called a bra)
v as |v〉 (called a ket)

Finally, note that every linear operator that maps C
N → C can be written as u∗ for some

u ∈C
N .

Adjoints of Functions

So far we appear to have done little more than observe that the inner product may be written
as 〈u,v〉 = u∗v where u∗ is usually the conjugate transpose of u – though our notation
does work for representations in non-orthonornmal bases as well. But the real power of the
notation is that it works for infinite-dimensional vectors as well – such as those represented
by functions of a continuous variable.

For example, a vector space of functions that we often use is the space of all square integrable
functions defined on the real line. That is, the set of functions

L2 (R) =

{

f : R → C and ‖f‖ ≡
∫ ∞

−∞
|f (x)|2 dx < ∞

}

.

For f, g ∈ L2 (R) , the usual inner product is given by

〈f, g〉 =
∫ ∞

−∞
f (x)g (x) dx.

In the same way as for finite dimensional vectors, we can think of f (x) as a simple operator

f :C → L2 (R)

4Consider 〈uc,v〉 for any c ∈ C and v ∈ C
N . As the inner product is anti-linear in the first argument we

have 〈uc,v〉 = c̄ 〈u,v〉 while the definition of the u
∗ is 〈uc,v〉 = 〈c,u∗

v〉 = c̄u∗
v. The implication follows.

43

defined by

fc = cf (x) .

The adjoint of this operator is

f∗:L2 (R) → C

which is given by, for any g ∈ L2 (R) ,

f∗g = 〈f, g〉 .

Again we note that any bounded linear functional5 that maps L2 (R) to C can be written as
f∗ for some function f .

Example – the Fourier Transform

The star notation provides a handy shorthand notation for the Fourier transform. For any
frequency let

eν (t) = exp (2πiνt)

then the Fourier transform of a function f (t) ∈ L2 (R) is

F (ν) = e∗νf.

Example – first N moments

Consider reconstructing a function f (x) defined on the interval [0, 1] from measurements of
its first N moments

dl =

∫ 1

0
xl−1f (x) dx l = 1, 2, . . . , N.

By defining the functions

al (x) = xl−1 for x ∈ [0, 1] , l = 1, 2, . . . , N

we can write the forward map as

dl = a∗l f, l = 1, 2, . . . , N

or in the “matrix-vector” form –

d = Af

where d is the N -dimensional vector of data. Here A is the discrete×continuous “matrix”

A = (a∗l (x)) =

· · · 1 · · ·
· · · x · · ·
· · · x2 · · ·

...
· · · xN−1 · · ·

in which the rows are the indicated functions defined on [0, 1]. The generalization of the
matrices ATA and AATare the representations of the operators A∗A and AA∗ – the first of

5A functional is just a linear operator that takes a function as its argument.

44

which is continuous×continuous while the later is discrete×discrete. So naturally we choose
the smaller matrix which is the N ×N matrix which has kl component

(AA∗)kl = a∗kal =
∫ 1

0
xl−1xk−1 dx =

1

k + l − 1
,

where we have used the important relation that (a∗l)
∗ = al.

First the simplest case, N = 1. Now AA∗ = (1) which has one eigenvalue of 1 with eigenvector
(1) . Consequently, A has one non-zero singular value, equalling 1, and the corresponding
singular vector in image space is

A∗ (1) = 1 (x) ,

i.e., the constant function with value 1. The left-hand side is the matrix A∗ acting on the
data vector (1) ,and since A = a∗1 (x) = 1∗, in this case, then A∗ = a1 (x) = 1 (x) and the
function 1 (x) acting on the number 1 simply results in the function 1 (x) which is the constant
function with value 1.

A bit more substantial is the case N = 3: Now

AA∗ =

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

which has the normalized eigenvectors: u1 =

0. 82706
0. 46039
0. 32248

, u2 =

0. 54744
−0. 52822
−0. 64909

, and

u3 =

0. 12766
−0. 71375
0. 68868

, with eigenvalues 1. 4083, 0. 12233, and 2.6873 × 10−3, respectively.

The vectors are also the left singular vectors of A while the singular values are the square-
roots of the eigenvalues and are: σ1 = 1. 1867, σ2 = 0. 34976, and σ3 = 5. 1839 × 10−2. The
right singular vectors may be found, as in equation 2.32 or 2.36, by operating on each of the
left singular vectors by A∗ and dividing by the corresponding singular value. The resulting
functions are

v1 (x) =

A∗

0. 82706
0. 46039
0. 32248

1. 1867
= 0 . 69694 + 0. 38796x + 0. 27175x2

v2 (x) =

A∗

0. 54744
−0. 52822
−0. 64909

0. 34976
= 1. 5652 − 1. 5102x − 1. 8558x2

v3 (x) =

A∗

0. 12766
−0. 71375
0. 68868

5. 1839 × 10−2
= 2. 4626 − 13. 769x + 13. 285x2

45

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

R
ig

ht
 s

in
gu

la
r

ve
ct

or
s

v
1
(x)

v
2
(x)

v
3
(x)

Figure 2.7: The three right singular vectors

With a little work you should be able to show that these functions are indeed orthonormal
over the interval [0, 1] . Just for the record, here is a graph of the three right singular vectors

These are the three structures in the image which contribute to the data. Note that the
measurement process is about 20 times less sensitive to v3 (x) than to v1 (x) .

In the case where 10 moments are measured we have N = 10 and

AA∗ =

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

.

The square root of the eigenvalues give the singular values

46

index singular value

1 1. 3236
2 0. 5856
3 0. 18906
4 5. 0308 × 10−2

5 1. 1347 × 10−2

6 2. 1748 × 10−3

7 3. 5057 × 10−4

8 4. 634 × 10−5

9 4. 761 × 10−6

10 3. 3064 × 10−7

Notice how the singular values fall off rapidly. With a measurement accuracy of 1 part in
103, for example, we would expect to measure the first 6 components (to varying degrees)
while the remaining components of the data will typically be smaller than the noise.

47

3

Regularization Methods for Linear Inverse Problems

The primary difficulty with linear ill-posed problems is that the inverse image is undetermined
due to small (or zero) singular values of A. Actually the situation is a little worse in practice
because A depends on our model of the measurement process and that is typically not
precisely known, leading to a slight imprecision in the singular values. Usually that is not
significant for the large singular values, but may lead to ambiguity in the small singular values
so that we do not know if they are small or zero.

As an introduction to regularization, which is one method for surmounting the problems
associated with small singular vectors, we consider a framework for describing the quality of
a reconstruction f̂ in an inverse problem.

3.1 The data misfit and the solution semi-norms

In the last chapter, we considered the linear problem

d = Af + n

and focused on the structure of the operator A ∈Rm×n. As far as the data are concerned, a
reconstructed image f̂ is good provided that it gives rise to ‘mock data’ Af̂ which are close
to the observed data. Thus, one of the quantities for measuring the quality of f̂ is the data

misfit function which is usually the square of the residual norm

C (f) = ‖d−Af‖2 . (3.1)

However, from our previous considerations, we have seen that choosing f̂ so as to minimize
C (f) usually gives a poor reconstruction. If the rank of the operator A is less than n there
are an infinite number of reconstructions, all of which minimize C (f), since the data are
not affected by adding to a reconstruction any vector which lies in the null space of A. In
the presence of noise, finding the (possibly non-unique) minimum of C is undesirable as it
leads to amplification of the noise in the directions of the singular vectors with small singular
values. Instead, we usually regard the data as defining a feasible set of reconstructions for
which C (f) ≤ C0 where C0 depends on the ‘level’ of the noise. Any reconstruction within
the feasible set is to be thought of as being consistent with the data.

Since the data do not give us any information about some aspects of f , it is necessary to
include additional information which allows us to select from among several feasible recon-
structions. Analytical solutions are available if we choose sufficiently simple criteria. One way
of doing this is to introduce a second function Ω (f) representing our aversion to a particular

49

reconstruction. For example, we may decide that the solution having minimum norm should
be chosen from among the feasible set. This can be done by choosing

Ω (f) = ‖f‖2 . (3.2)

Sometimes, we have a preference for reconstructions which are close to some default solution

f∞. This may be appropriate if we have historical information about the quantity. This can
be done by choosing

Ω (f) = ‖f − f∞‖2 . (3.3)

More generally, it may not be the norm of f − f∞ which needs to be small, but some linear
operator acting on this difference. Introducing the operator L for this purpose, we can set

Ω (f) = ‖L (f − f∞)‖2 = (f − f∞)tLtL (f − f∞) . (3.4)

If the image space is n dimensional and the data space is m dimensional, the matrix A is of
size m×n and the matrix L is of size p×n where p ≤ n. Typically, L is the identity matrix or
a banded matrix approximation to the (n− p)’th derivative. For example, an approximation
to the first derivative in 1-dimension is given by the matrix

L1 =
1

∆x

−1 1
−1 1

. . .
. . .

−1 1

,

while an approximation to the second derivative is

L2 =
1

(∆x)2

1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1

.

In other cases, it may be appropriate to minimize some combination of the derivatives such
as

Ω (f) = α0 ‖f − f∞‖2 +
q
∑

k=1

αk ‖Lk (f − f∞)‖2 ,

where Lk is a matrix which approximates the k’th derivative, and αk are non-negative con-
stants. Such a quantity is also the square of a norm, called a Sobolev norm.

It is a simple result from linear algebra that any real symmetric positive semidefinite matrix
may be factorized into a product of the form LtL where L is a lower triangular matrix. A
constructive proof of this result leads to the Cholesky factorization of the square matrix. The
Sobolev norm above may thus also be written in the form of (3.4) for a suitable choice of L.

There are many ways of balancing the often conflicting requirements of equations (3.4) and
(3.1) which leads to a variety of regularization methods. We shall discuss two of these below.

50

3.2 Tikhonov regularization

This is perhaps the most common and well-known of regularization schemes. We form a
weighted sum of Ω (f) and C (f) using a weighting factor λ2, and find the image f̂λ which
minimizes this sum, i.e.,

f̂λ = argmin
f

{

λ2 ‖L (f − f∞)‖2 + ‖d−Af‖2
}

. (3.5)

This is a whole family of solutions parameterized by the weighting factor λ2. We call λ the
regularization parameter. If the regularization parameter is very large, the effect of the data
misfit term C (f) is negligible to that of Ω (f) and we find that limλ→∞ f̂λ = f∞. With a
large amount of regularization, we effectively ignore the data (and any noise on the data)
completely and try to minimize the solution semi-norm which is possible by choosing the
default solution. On the other hand, if λ is small, the weighting placed on the solution semi-
norm is small and the value of the misfit at the solution becomes more important. Of course,
if λ is reduced to zero, the problem reduces to the least-squares case considered earlier with
its extreme sensitivity to noise on the data.

A formal solution to the problem may readily be found. We set

∂

∂fk

{
λ2 (f − f∞)tLtL (f − f∞) + (d−Af)t (d−Af)

}
= 0, (3.6)

for k = 1, 2, ..., n. This leads to the simultaneous equations

2λ2LtL (f − f∞)− 2At (d−Af) = 0, (3.7)

or
(
λ2LtL+AtA

)
f = λ2LtLf∞ +Atd. (3.8)

Setting λ = 0 reduces this system of equations to the normal equations associated with the
usual least squares problem. For non-zero values of λ, the additional term λ2LtL in the matrix
on the left-hand side alters the eigenvalues (and eigenvectors) from those of AtA alone. So
long that

(
λ2LtL+AtA

)
is non-singular, there is a unique solution. The problem of image

reconstruction is thus reduced to solving a (large) system of simultaneous equations with a
symmetric positive definite coefficient matrix, and we shall later discuss ways of solving such
systems of equations.

3.3 Truncated singular value decomposition (TSVD)

Let us suppose that the operator A has the singular value decomposition

A =
r∑

l=1

σlu
t
lvl. (3.9)

The truncated singular value decomposition (TSVD) method is based on the observation
that for the larger singular values of A, the components of the reconstruction along the
corresponding singular vector is well-determined by the data, but the other components are
not well-determined. An integer k ≤ n is chosen for which the singular values are deemed to
be significant and the solution vector f̂ is chosen so that

vT
l f̂ =

uT
l d

σl
for l = 1, ..., k. (3.10)

51

The components along the remaining singular-vector directions {vl} for l = k + 1, ..., n are
then chosen so that the total solution vector f̂ satisfies some criterion of optimality, such as
the minimization of a solution semi-norm of the form Ω (f) = ‖L (f − f∞)‖2 as above. Let us
denote by Vk the n× (n− k) matrix whose columns are {vl} for l = k+1, ..., n so that Vk is
the matrix whose columns span the effective null space of A. The reconstruction which has
zero projection in this effective null space is

f ′ =
k∑

l=1

(
uT
l d

σl

)

vl . (3.11)

The desired reconstruction f̂ must be equal to the sum of f ′ and a vector which is the
superposition of the columns of Vk. This may be written as

f̂ = f
′
+

n∑

l=k+1

clvl = f ′ +Vkc (3.12)

for a n− k element column vector c. The solution semi-norm of this reconstruction is

Ω
(

f̂
)

=
∥
∥
∥L
(

f̂ − f
∞)∥∥
∥

2
=
∥
∥L
(
f ′ +Vkc− f∞

)∥
∥2 =

∥
∥L
(
f ′−f∞

)
+ (LVk) c

∥
∥2

The vector c which minimizes this semi-norm is

c = − (LVk)
† L
(
f ′−f∞

)

where the dagger represents the Moore-Penrose inverse. i.e., for any matrixA, we defineA† =
(
AtA

)−1
At. This gives an explicit expression for the truncated singular value decomposition

solution, namely

f̂ = f
′ −Vk (LVk)

†L
(
f ′−f∞

)
(3.13a)

where f ′ is given by (3.11) above.

Note that some authors use the terminology truncated singular value decomposition to refer
to the special case where L is chosen to be the identity matrix, and call the general case
derived above the modified truncated singular value decomposition.

3.4 Filter factors

In any regularization scheme, there is a regularization parameter which is a quantity that
can be adjusted in order to change the degree of regularization of the solution. For values of
this parameter at one end of its range, the solution is usually smoother, more similar to the
default solution and less affected by noise on the data whereas for values of this parameter
at the other end, the solution can be very sensitive to noise as it is primarily determined by
the requirement of minimizing the data residual. In the case of Tikhonov regularization, the
parameter is the quantity λ while in the case of the TSVD method, it is the choice of k at
which the singular values are deemed to be negligible.

It is useful to be able to look at the range of solutions which result as the regularization pa-
rameter is varied. This can always be done by recomputing the solution from scratch for each
value of the parameter, but this is computationally very intensive as we often need to invert
a large matrix for each choice of the regularization parameter. An advantage of studying the

52

singular value decomposition is that it provides a convenient way of investigating the family
of regularized solutions without having to reinvert large matrices. We shall thus re-examine
the regularization methods described above in terms of the singular value decomposition.

Tikhonov regularization can be analyzed in this way when the matrix L happens to be
the identity. For more general L, an extension of the singular value decomposition called
the generalized singular value decomposition (GSVD) may be defined, but we shall not be
considering it in this course. The solution to the problem is given by

(
λ2I+ATA

)
f̂ = λ2f∞ +Atd (3.14)

Let us suppose that we have computed the singular value decomposition of A in the usual
form

A =
r∑

l=1

σlulv
t
l (3.15)

then

(
λ2I+AtA

)
f̂ = λ2

n∑

l=1

f̂lvl +

r∑

l=1

σ2
l f̂lvl (3.16)

=

r∑

l=1

(
λ2 + σ2

l

)
f̂lvl + λ2

n∑

l=r+1

f̂lvl (3.17)

where f̂l = vt
l f̂ and

λ2f̂∞ +Atd = λ2
n∑

l=1

f∞
l vl +

r∑

l=1

σldlvl (3.18)

=
r∑

l=1

[

λ2f∞
l + σ2

l

(
dl
σl

)]

vl + λ2
n∑

l=r+1

f∞
l vl (3.19)

where f∞
l = vt

l f
∞, dl = ut

ld and we have made use of the fact that

I =

n∑

l=1

vlv
t
l

since the {vl}nl=1 form an orthonormal basis of Rn. Equating (3.17) and (3.19) and using the
linear independence of the vectors vl we see that

f̂l =

{
λ2

λ2+σ2
l

f∞
l +

σ2
l

λ2+σ2
l

(
dl
σl

)

for l = 1, 2, ..., r,

f∞
l for l = r + 1, ..., n.

(3.20)

This displays the solutions to the regularization problem for all values of λ in a convenient
form. In the directions of the singular vectors vr+1, ...,vn which span the null space of A, the
projections f̂l of the regularized solution are equal to the projections of the default solution
f∞
l . This is not unreasonable as the data do not give us any information about those aspects
of the image. On the other hand, along each of the directions v1, ...,vr for which the data do
give us some information, the regularized solution is a weighted linear combination of f∞

l ,
which is what the default solution would have us take, and of dl/σl which is what the data

53

alone would have suggested. Notice that since the weights add up to one, the regularized
solution lies along the line in n space joining these points. The value of the weights is also of
interest. As λ becomes large, the solution is pulled towards the default solution, as expected,
but it should be noticed that where along the line the solution ends up at depends on the
relative values of λ and of σl. The larger is the singular value σl, the smaller is the relative
effect of the regularization parameter λ. In fact we need to have λ = σl in order to pull the
component of the solution to the midpoint of the line joining f∞

l vl and (dl/σl)vl. This is
desirable since it is precisely in the directions corresponding to the large singular values that
the data give us the greatest information.

The quantities σ2
l /
(
λ2 + σ2

l

)
which multiply the data coefficient (dl/σl) are called filter fac-

tors. They show how the algorithm reduces the weighting for the data which are associated
with the small singular values. Depending on the level of the noise on the data, we need
different amounts of protection against the noise-amplifying effects of reconstruction using
the small singular values.

By contrast to the Tikhonov regularization algorithm in which the filter factors smoothly
decrease to zero as the singular values gets smaller, the truncated singular value algorithms
have filter factors which are equal to unity for those singular values which are deemed to
be non-negligible (l ≤ k) and to zero for those singular values which are negligible (l > k).
The value of the components of the regularized solution in the directions of the significant
singular values are completely determined by the data, as

f̂l =
dl
σl

for l = 1, 2, ..., k

The other components f̂k+1, ..., f̂n are adjusted so as to minimize the solution semi-norm.

3.5 Smoothness versus data-fitting in the deblurring example

The regularizing parameter, λ, can be thought of as controlling the balance between mini-
mizing the regularizing term – which is often a criterion of smoothness of the reconstructed
image – and minimizing the term which corresponds to fitting the data. When λ is small,
there is little weight put on the regularizing term, the data is fitted well and the reconstructed
image is not smooth. Conversely when λ is large, the regularizer dominates the minimization
and the reconstructed image is smooth – at the expense of not fitting the data so well.

As an example, I have plotted some pixel values from the deblurring example in Chapter 1.
The pixels shown are those with indexes (107,210:250) – to use the Matlab notation – and
are the pixels through the middle of the word ‘way’.

54

215 220 225 230 235 240 245 250
−3000

−2000

−1000

0

1000

2000

3000

pixel number on line 107

pi
xe

l v
al

ue

Pixel values in unregularized
inverse.

215 220 225 230 235 240 245 250
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

pixel number on line 107

pi
xe

l v
al

ue

Regularized inverse: λ = 0.1

215 220 225 230 235 240 245 250
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

pixel number on line 107

pi
xe

l v
al

ue

Regularized inverse: λ = 1

215 220 225 230 235 240 245 250
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

pixel number on line 107

pi
xe

l v
al

ue

Regularized inverse: λ = 10

215 220 225 230 235 240 245 250
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

pixel number on line 107

pi
xe

l v
al

ue

Regularized inverse: λ = 100

215 220 225 230 235 240 245 250
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

pixel number on line 107

pi
xe

l v
al

ue

Regularized inverse: λ = 1000

Note how the graphs of pixel value become more smooth as λ is increased.

3.6 Choosing the regularization parameter

We have seen that λ sets the balance between minimizing the residual norm ‖d−Afλ‖2and
minimizing the roughness ‖fλ − f∞‖2 .The big question now is “how to choose λ”?

55

pixel number on line 107
pi

xe
l v

al
ue

215 220 225 230 235 240 245 250
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Figure 3.1: Pixel values in original (unblurred and un-noisy) image with the text, as reference.

less ltering

more ltering

lo
g
‖L

(f
−

f∞
)‖

log ‖d−Afλ‖

Figure 3.2: The generic form of the L-curve.

3.6.1 The L-Curve

Perhaps the most convenient graphical tool for setting λ is the “L-curve”. When we plot
log ‖d−Afλ‖ versus log ‖fλ−f∞‖ (for a discrete problem) we get the characteristic L-shaped
curve with a (often) distinct corner separating vertical and horizontal parts of the curve.

The rationale for using the L curve is that regularization is a trade-off between the data
misfit and the solution seminorm. In the vertical part of the curve the solution seminorm
‖L (f − f∞)‖ is a very sensitive function of the regularization parameter because the solution
is undergoing large changes with λ in an attempt to fit the data better. At these low levels
of filtering, there are still components in the solution which come from dividing by a small
singular value, which corresponds to having inadequate regularization. On the horizontal
part, the solution is not changing by very much (as measured by the solution seminorm) as
λ is changed. However, the data misfit is increasing sharply with more filtering. Along this
portion, our preference for the more highly filtered solutions increases only slightly at the
cost of a rapidly rising data misfit, and so it is desirable to choose a solution which lies not
too far to the right of the corner.

The following figure shows the L-curve that is associated with the deblurring example in
chapter 1.

The curve is labeled parametrically with the values of the regularization parameter. In this

56

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
2

10
3

10
4

10
5

0.01

0.1

1

10
100

1000

104

Data misfit norm

S
ol

ut
io

n
se

m
i−

no
rm

Figure 3.3: L-curve for the deblurring example

example, the bend in the curve is not very sharp, and the solution which appears optimal
visually lies slightly to the right of the position of largest upwards-pointing curvature.

3.6.2 The Discrepancy Principle

This is an alternative criterion advocated by those who believe that “the data come first”.
The value of λ is chosen so as to place the solution on the edge of the feasible set as defined
by C (f) ≤ C0. Since C (f) is the sum of squares of noise terms, its expectation value can
be calculated if one knows the amount of noise that is present. The value of C0 is selected
such that the probability of exceeding this value due to chance alone is smaller than some
threshold, say one percent. A problem with the practical use of this method is that there are
often systematic errors as well (such as an inaccurate characterization of the forward problem)
in the observation process, so that attempting to fit the data to within the precision allowed
by the random errors alone can sometimes lead to under-regularization. This corresponds to
finding a solution on the vertical part of the L curve.

3.7 Three Pictorial Examples

3.7.1 Deblurring with missing data

The figures below show a reconstruction based on the blurred image discussed in the first
chapter, with the added complication that half the points of the blurred image are now
assumed to be unmeasured or corrupted. In Figure 3.4, all unmeasured points are shown as
black. The forward problem is as before, except that after the convolution is complete, the
unmeasured points are discarded before comparison with the data. In this case, the Fourier
division method is inapplicable because the forward map is not even square; Atempting
Fourier division by setting missing values to zero fails completely. However, a regularized
reconstruction still allows the message to be read as shown in Figure 3.5. In this case the
minimization required in Eqn. 3.5 is implemented directly, using the algorithm in Section 3.A.

57

Figure 3.4: Blurred image with missing data. Every black pixel indicates a data point that
was unmeasured. In this image, approximately half the pixels are unmeasured.

Figure 3.5: Reconstruction from the above data set

3.8 Deblurring with model error and measurement error

Here are two further examples of regularized inversion, showing the effect of model error and
measurement error.

Figure 3.6 shows a tableau of images, starting with the original (true) image on the left. A
blurred version was created using the MatLab command

58

original blurred direct inverse regularized inverse

Figure 3.6: An image, a blurred version, inverse by Fourier deconvolution, and the Tikhonov
regularized reconstruction.

blurred = conv2(frog,ones(5,5)/25,’same’);.
(conv2 implements 2-dimensional convolution with the point-spread function ones(5,5)/25

that is normalized so constant images are unchanged. The argument ’same’ returns the
portion of the convolution that is the same size as the original image. No noise was added.

Fourier deconvolution was implemented as for the example in section 1.4, with the result
shown as ‘direct inverse’. As you can see, it looks awful. Can you work out what went
wrong?

The problem is that the forward map is not exactly convolution, because of the truncation
of the convolution result using the ’same’ argument. That truncation means that in the
border of width 4 pixels1 around the image, the forward map is not simply a shifted version
of the forward map in the middle of the image. Hence the Fourier transform does not exactly
diagonalize the forward map, and the inversion is not exact. That error in the model for
the forward map – that is only inaccurate in the 4 pixel wide border – is enough to produce
artifacts throughout the image, that has a hash pattern related to the width of the border.

We have to conclude that model error can make the inverse no use!

You might wonder why the same problem did not occur in the deblurring example in sec-
tion 1.4. We avoided this problem by cooking the example, by putting a border of zeros
in the original text image, with width greater than the width of the point spread function.
Then when the blurred image is zero padded, the padded values actually fill in the missing
values very accurately. For the frog image, zero padding does not fill in the truncated values
accurately.

Figure 3.7 shows a similar tableau of images,with the original (true) image on the left. This
time the blurred version was created using the MatLab command

blurred = conv2(frog,ones(5,5)/25,’same’) + 10*rand(size(frog));

so noise has also been added to the blurred image.

As you should expect, the direct inversion using Fourier deconvolution is still awful, and is
somewhat worse compared to the case where no noise was added. Again, Tikhonov regularized
inversion is able to produce a visually acceptable reconstruction, thought the result is not
quite as good as the case where no noise is added.

1the point-spread function is 5 pixels wide

59

original blurred + noise direct inverse regularized inverse

Figure 3.7: An image, a noisy blurred version, inverse by Fourier deconvolution, and the
Tikhonov regularized reconstruction.

3.9 Why look beyond least-squares and regularization?

The deblurring examples, in sections 1.4 and 3.7.1, show that regularized inversion can do
a good job of damping the spurious components in a reconstruction that arise because of
small singular values. At least the reconstructed image is useful in the sense that it can be
identified, and the text read.

However, inversion by regularization suffers from several major drawbacks that make it of
limited value in the wider setting of inverse problems. Probably the most severe limitation
is that the regularized inverse is not quantitatively accurate in the sense that values, or
properties, of the true image are not accurately recovered. We will see this property when we
consider the distribution over measurement errors more closely. In particular, uncertainties
in the regularized reconstruction do not have a sensible probabilistic interpretation. We will
see in the following ’contrived’ example, how the apparent accuracy of the reconstruction can
be quite misleading, and far from the best we can do.

3.9.1 An example showing stochastic bias

Lemma 3.9.1 If z is a random variable from any distribution with mean µ and variance σ2,
then E

[
z2
]
= µ2 + σ2.

Proof. Var [z] = E
[
z2
]
− (E [z])2.

This is an example of how expectation does not commute with general non-linear functions.
(In this case, (E [z])2 6= E

[
z2
]
.) We all know this, but somehow manage to assume it is

true when applying least-squares estimation to general problems. Here is an example that
explicitly demonstrates the resulting error made by least-squares estimation.

In this example, we want to estimate a scalar x∗ from N noisy measurements of
√
x∗/i for

some value of x∗. That is, we measure

di =

√
x∗
i

+ ni, i = 1, 2, . . . , N.

60

The least squares estimate of x∗ is

x̂ = argmin
x

N∑

i=1

(

di −
√
x

i

)2

given by normal equations
N∑

i=1

fi (x̂) f
′
i (x̂) =

N∑

i=1

dif
′
i (x̂)

where, for convenience, we defined the function fi(x) =
√
x
i . For the particular function we

are fitting, the normal equations can be solved to give the estimate

x̂ =

[∑N
i=1 di/i

∑N
i=1 1/i

2

]2

.

We will denote the term in the square brackets by w. Note that w is the sum of normal random

variables, hence w ∼ N
(√

x∗, σ2/
∑N

i=1 1/i
2
)

→ N
(√

x∗, 6σ2/π2
)
as N → ∞. Thus, in the

limit of an infinite number of measurements

E [x̂] = x∗ + 6σ2/π2,

i.e. the least-squares estimate is biased. Actually, the estimate is biased for all N , and the
bias actually increases as we make more measurements. That’s not good!

Alternatively, if we want to estimate w =
√
x, so fi (w) = w/i, then the normal equations for

w give

ŵ =

∑N
i=1 di/i

∑N
i=1 1/i

2
E [ŵ] =

√
x∗

which is not biased (∀N).

To summarize, in the limit N → ∞,

ŵ = 6
π2

∑N
i=1 di/i is an unbiased estimate of

√
x∗

x̂ = ŵ2 is a biased estimate of x∗

Note the following:

• It is easy to remove bias in x̂ (just subtract 6σ2/π2). The resulting estimate is better
in all ways (same variance but reduced bias) and is explicitly not the least-squares fit
to data! In this case the best fit to data is not the best fit to parameters.

• The unbiased estimate of x∗ is not the square of the unbiased estimate of
√
x∗. In under-

graduate statistics courses you would learn the more general notion that: “Conditioning
on estimates gives poor predictive densities”.

61

We can also calculate the Tikhonov regularized estimates2 in this case.

x̂λ = argmin
x

(
N∑

i=1

(di − fi (x))
2 + λ2

N∑

i=1

(fi (x))
2

)

for N → ∞ (x̂0 = x̂ls, ŵ0 = ŵls)

x̂λ =
x̂λ

(1 + λ2)2
, ŵλ =

ŵλ

1 + λ2

E [x̂λ] =
x∗ + 6σ2/π2

(1 + λ2)2
, E [ŵλ] =

√
x∗

1 + λ2

Note that now both estimates are biased. Further, the bias depends on the unknown x∗,
which means it is harder to fix the bias. So, in this case, regularization has actually made
the estimates worse for the purposes of quantifying errors on estimates.

3.9.2 Least-squares with uniform noise

Our second simple example that shows up problems with least-squares estimation considers
estimation of a scalar quantity that is measured subject to uniform noise. Uniform noise
with known range is often used as a simple model for digitization error, though we are not
suggesting that for the current example.

Assume thatK direct measurements of the scalar µ are made, subject to independent uniform
noise with range [−1, 1]; that is, the ith measurement is

di = µ+ ni

each ni ∼ U (−1, 1).

It is possible to bound the value of µ by simple considerations; Since µ − 1 ≤ di ≤ µ+ 1 for
all i, it follows that

max {di} − 1 ≤ µ ≤ min {di}+ 1.

This turns out to be precisely the Bayesian likelihood function for µ based on measurements
{di : i = 1, 2, . . . ,K}.
The least-squares estimate of µ from K measurements is

µ̂ls =
1

K

K∑

i=1

di

and is has the mean-square-error 1/
√
3K, that is usually quoted as the error in this esti-

mate. How does this estimate and error perform over repeated experiments consisting of K
measurements each?

The following figure shows the result of 10 experiments (numbered 1 to 10 horizontally) with
the value of the K = 10 measured values shown vertically, for the case µ = 0.

2Tikhonov regularized estimates are sometimes referred to as damped least-squares estimates.

62

1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

experiment number

Figure 3.8: Least-squares estimates for K = 10 measurements subject to uniform noise of
known range, for the case µ = 0. Red dots: data; Squares: least-squares estimate; Green
error bars: feasible interval.

In 30% of experiments (this is the theoretically derived percentage), the least-squares estimate
is not even feasible. Perhaps a more serious problem, for applications with multiple noise
sources, is that the least-squares ‘error’ of ±0.4082 has nothing to do with actual width of
the feasible interval; sometimes it is smaller, sometime larger. Note that the least-squares
error does not depend on the data set (this is often stated as an advantage of the least-squares
method) and so cannot reflect the actual length of the feasible interval, that does depend on
the particular data set.

3.A Solving large systems of equations for regularization
problems

This is a very large subject in its own right which we cannot treat in detail. Although the
singular value decomposition (and the generalized SVD) is useful for the theoretical study of
inverse problems, it is rather numerically intensive to calculate in practice. As a rough guide,
finding the SVD is feasible when there are up to a few hundred variables, and so is of limited
use for problems involving several thousand to several million components in the image and
data vectors.

The mapping from the image to the data is specified by multiplication by the matrix A. For
large problems, it is often not feasible to store the matrix A in the computer, or to compute
its action by direct multiplication. If for example, we take the problem of blurring an image
consisting of a 256×256 pixel scene to produce a data photograph of the same size, the sizes of
image and data space are each 65536 dimensional, and the matrixA has 2564 elements. In the
case of blurring, we know that the two-dimensional convolution corresponding to the action of
A can be computed efficiently via the trick of multiplying together Fourier transforms, and so

63

the matrix A is never formed explicitly. When writing algorithms for solving such problems,
we cannot use methods which involve manipulating the full matrices, and we should regard
even the storage of vectors in image and data space being rather costly. For generality, we
assume that the user will provide us with a function that will calculate Av and Lv when
provided with a vector v ∈Rn. As we shall see, we also need to be provided with routines to
calculate Atu for u ∈ Rm and Ltw for w ∈ R

p. These functions will usually employ some
trick such as using Fourier transforms or exploiting the sparsity of the matrices in order to
do the calculation in a reasonable time.

In the above, we derived the simultaneous equations for Tikhonov regularization from the
minimization of the function

L (f) = λ2 ‖L (f − f∞)‖2 + ‖d−Af‖2

For the linear inverse problem, this is a quadratic in the image f . Before describing the
algorithm, we need to consider some properties of such quadratic expressions.

3.A.1 Minimizing a quadratic in many dimensions

A quadratic expression in a vector x ∈Rn has the general form

Q (x) = xtHx− xtG−Gtx+Q0 (3.21)

where H ∈Rn×n is a real symmetric matrix, G ∈Rn is a vector and Q0∈R. This quadratic
has a stationary point whenever

∂Q

∂xi
= 2

∑

j

hijxj − 2gi = 0 (3.22)

for all i ∈ {1, ..., n} . i.e., stationary points xs of Q satisfy the set of linear equations

Hxs = G (3.23)

Depending on the nature of the matrixH, this can have none, one or infinitely many solutions.
A special case of interest is when H is positive definite, which means that xtHx ≥0 for all
x, and that xtHx = 0 only if x = 0. If H is positive definite, it is invertible and there is a
unique stationary point

xs = H−1G (3.24)

The original quadratic may be written as

Q (x) = (x− xs)
tH (x− xs) +

(
Q0 − xt

sHxs

)
(3.25)

from which it is clear that xs is the global minimum of Q. When H is positive definite, we
may regard solving the system of equations (3.23) and minimizing the quadratic (3.21) as
being equivalent problems.

Let us now consider the problem of minimizing Q (x) when n is so large that computing H−1

explicitly is not feasible. We can consider an iterative algorithm which proceeds from an
initial guess x0 of the minimum to a point x1 which is hopefully a better estimate of xs. One
way of doing this is to consider the direction of steepest descent from x0. This is along the
direction opposite to the gradient of Q at x0. We see that

∇Q = 2 (Hx−G)

64

and so the direction of steepest descent is along −∇Q which is parallel to s1 = G−Hx0. We
now proceed along the line x0 + c1s1 trying to find a better approximation to xs. It is easy
to find out how Q behaves on this line, since

Q (x0 + c1s1) = (x0 + c1s1)
tH (x0 + c1s1)− (x0 + c1s1)

tG−Gt (x0 + c1s1) +Q0

=
(
st1Hs1

)
c21 −

{
st1 (G−Hx0)+ (G−Hx0)

t s1
}
c1 +Q (x0) (3.26)

This is a quadratic in c1 whose minimum is readily found to be at

c1 =
st1 (G−Hx0)+ (G−Hx0)

t s1
2 (st1Hs1)

=
st1s1
st1Hs1

(3.27)

We now set x1 = x0 + c1s1 as our next estimate of the position of xs. Notice that in order
to compute c1, all that we need to be able to do is to calculate Hs1 and to carry out
arithmetic with vector quantities. So long that Hs1 can be computed efficiently, no large
matrices need to be stored. We can proceed iteratively, finding −∇Q (x1) and searching
along this direction from x1 to find the point x2 which minimizes Q along this line. This is
known as the steepest descent algorithm for minimizing a function. At each iteration, a one
dimensional search is carried out, and the hope is that a succession of these will ultimately
lead to the minimization of the n dimensional quadratic. Despite its intuitive appeal, it is a
very inefficient way of minimizing a function of many variables. Unless the contours of Q are
spherical, it requires many more than n iterations to find the minimum due to a phenomenon
called “hem-stitching” in which the succession of iterates slowly crawls down the walls of a
long elliptical valley. In effect, each successive search largely undoes the work of the previous
step, and the result is only a very gradual reduction in Q. For large n, this algorithm is
essentially useless.

Instead of starting at an initial guess and searching along a single line for the minimum of Q,
we can consider searching in a larger subspace starting from an initial guess. For the moment,
suppose that someone gives us a list of linearly independent search directions, s1, s2,..., sk and
asks us to minimize Q within the subspace

x0 + c1s1 + ...+ cnsn = x0 + Sc (3.28)

where S is the matrix whose columns are the search directions and c is the column vector of
the coefficients. Within this k dimensional affine space, we see that

Q (x0 + Sc) = (x0 + Sc)tH (x0 + Sc)− (x0 + Sc)tG−Gt (x0 + Sc) +Q0 (3.29)

= ct
(
StHS

)
c− ctSt (G−Hx0)− (G−Hx0)

t Sc+
(
Q0 + xt

0Hx0 − xt
0G−Gtx0

)

(3.30)

= ctH̃c− c
t
G̃− G̃tc+Q̃0 (3.31)

which is also a quadratic in c, with the matrices

H̃ = StHS (3.32)

G̃ = St (G−Hx0) (3.33)

Q̃0 = Q (x0) = Q0 + xt
0Hx0 − xt

0G−Gtx0 (3.34)

Since the columns of S are linearly independent and the matrix H is positive definite, so is
the matrix H̃. By the above discussion, the minimum of Q (x0 + Sc) in this affine subspace
is located at

ĉ = H̃
−1

G̃ (3.35)

65

This can be readily computed since the matrix H̃ is only of size k× k where k is the number
of search directions in the subspace. When using a subspace search, the next guess at the
minimizing point xs is

x1 = x0 + Sĉ = x0 + SH̃
−1

G̃ (3.36)

We can then proceed iteratively to get a succession of estimates to xs.

The efficiency of the resulting algorithm depends critically on making an appropriate choice
for the search directions. One might imagine starting at x0 and searching in the direction of
s1 = −∇Q (x0) , thus reaching x1. From there, we find s2 = −∇Q (x1), but instead of simply
searching along this line, we can search in the affine subspace spanned by s1 and s2 starting
at x1. Having found the minimum of Q in this subspace at x2, we then set s3 = −∇Q (x2)
and search the subspace spanned by s1, s2 and s3. In this way, we search for the minimum
over larger and larger spaces, which ensures that each search does not undo the work of the
previous searches. The spaces generated in this manner are known as the Krylov subspaces.

The algorithm, as described would rapidly become unworkable since the search space increases
in size on each iteration. However, due to a truly amazing result which we do not have time
to prove, it turns out that for quadratics, it is possible to achieve the same result as searching
over all the space spanned by all the previous search directions by searching firstly along
−∇Q (x0) and subsequently over only a two-dimensional space on each iteration.

Suppose we have reached the point xl after the l’th iteration. We calculate −∇Q (xl) as
before and search within the affine space spanned by this vector and the vector xl − xl−1.
It can be shown that in the absence of round-off errors, the effect is the same as if we had
searched in the space spanned by −∇Q (x0) , −∇Q (x1) , ...,−∇Q (xl) . With this algorithm
and perfect arithmetic, one can reach the minimum of an n dimensional quadratic in at most
n steps.

The following Matlab code illustrates how a search can be carried out over an arbitrary affine
subspace around the current point. The user specifies the search directions as the columns
of the matrix S.

function [xnew,Qpred] = search1(x0,res,Hfunc,Qnow,S)

% Searches in an affine subspace for the minimum of the

% quadratic

% Q(x) = x’*H*x-x’*G-G’*x+Q0

% x0 = Initial guess of location of the minimum

% res = G-H*x0

% Hfunc = Name of function which calculates H*x for given x

% Qnow = Value of Q(x0)

% S = matrix with search directions as its columns

% Sze Tan, University of Auckland, July 1998

nsrch = size(S,2);

HS = zeros(length(x0),nsrch);

fprintf(’Value of quadratic (current) = %f\n’,Qnow);

for k = 1 : nsrch

HS(:,k) = feval(Hfunc,S(:,k));

end

66

Hq = S’*HS;

Gq = S’*res;

c = Hq\Gq;

Qpred = Qnow + c’*Hq*c - c’*Gq - Gq’*c;

fprintf(’Value of quadratic (predicted) = %f\n’,Qpred);

xnew = x0 + S * c;

In this code, the function whose name is in Hfunc is used to apply the matrixH to an arbitrary
vector. In general, this will compute the product in some indirect way for efficiency. However,
as an illustrative example, the following shows how we can solve the problem Hx = G for
a small matrix H by making the function Hfunc do an explicit matrix multiplication. Note
that H has to be positive definite for the algorithm to work. In this algorithm, we predict
the value that Q (x) is going to have on the next iteration by examining its behaviour in the
subspace. On the next iteration the value of Q is recalculated at this point and it is a good
check to see that the actual value agrees with the predicted value.

global H

% Set up a random positive definite matrix H and a right-hand side

% of the equation

neq = 20;

H = rand(neq,neq);

H = H’*H + 1e-6*eye(neq,neq);

G = randn(neq,1);

% Hmult is the name of a simple function that multiplies by H

Hfunc = ’Hmult’;

S = [];

% Random starting guess

x0 = randn(neq,1);

while 1,

Hx = feval(Hfunc,x0);

res = G - Hx;

fprintf(’Norm of residual = %f\n’,norm(res));

Qnow = x0’*Hx - x0’*G - G’*x0;

S(:,1) = 2*res; % Search direction along negative gradient

[xnew,Qpred] = search1(x0,res,Hfunc,Qnow,S);

S(:,2) = xnew - x0; % Second search direction

x0 = xnew;

keyboard % Type "return" to continue to next iteration

end

Notice how the matrix of search directions S is set up. On the first iteration, it consists of
a single column containing 2 (G−Hx0) . This is the negative gradient at the starting guess.
After the first iteration, the second column of S is set to x1 − x0. On the second iteration,
the first column is set to 2 (G−Hx1) ≡ −∇Q (x1) so that the function search1 finds the
minimum in the two dimensional space spanned by −∇Q (x1) and x1−x0, as required. This
process continues on subsequent iterations.

The function Hmult is simply

67

function y = Hmult(x)

global H

y = H*x;

3.A.2 Application to Tikhonov Regularization

For Tikhonov regularization, we need to find the minimum of the quadratic expression

L (f) = λ2 ‖L (f − f∞)‖2 + ‖d−Af‖2 (3.37)

= λ2Ω (f) + C (f) (3.38)

where we shall assume that λ has been given. One can apply the algorithm discussed above
directly to this problem by multiplying out the norms in order to find the matrices H and
G, but it is convenient to use the special form of the expression and to assume that the user
can provide functions which will apply the forward operator A and the operator L to any
given vector.

Starting from f0 and searching within a subspace spanned by the columns of S as before, we
wish to consider

L (f0+Sc) = λ2Ω (f0+Sc) + C (f0+Sc) (3.39)

Substituting into the expression for Ω, we find

Ω (f0+Sc) = ‖L (f0 + Sc− f∞)‖2 (3.40)

= (f0 + Sc− f∞)tLtL (f0 + Sc− f∞) (3.41)

= ctStLtLSc+ ctStLtL (f0−f∞) + (f0−f∞)t LtLSc+Ω(f0) (3.42)

= ctH̃Ωc− ctG̃Ω − G̃t
Ωc+Ω(f0) (3.43)

where

H̃Ω = StLtLS =(LS)t (LS) (3.44)

G̃Ω = −StLtL (f0−f∞) = − (LS)t L (f0−f∞) (3.45)

Similarly using the expression for C, we find

C (f0+Sc) = ‖d−A (f0+Sc)‖2 (3.46)

= {d−A (f0+Sc)}t {d−A (f0+Sc)} (3.47)

= ctStAtASc− ctStAt (d−Af0)− (d−Af0)
tASc+C (f0) (3.48)

= ctH̃Cc− ctG̃C − G̃t
Cc+C (f0) (3.49)

where

H̃C = StAtAS =(AS)t (AS) (3.50)

G̃C = StAt (d−Af0) = (AS)t r0 where r0 = d−Af0 (3.51)

Thus

L (f0+Sc) = ct
(

λ2H̃Ω + H̃C

)

c− ct
(

λ2G̃Ω + G̃C

)

−
(

λ2G̃Ω + G̃C

)t
c+L (f0) (3.52)

68

The minimum in the subspace occurs where

ĉ =
(

λ2H̃Ω + H̃C

)−1 (

λ2G̃Ω + G̃C

)

(3.53)

and so we set

f1 = f0 + S
(

λ2H̃Ω + H̃C

)−1 (

λ2G̃Ω + G̃C

)

(3.54)

These considerations are illustrated in the Matlab program included below

function [fnew,cpred,wpred] = subsearch(f0,res,fdef,Afunc,Lfunc,lambda,S)

% Searches in subspace spanned by columns of S for the optimal solution

% of the regularization problem

% (lambda)^2*||L*(f-fdef)||^2 + ||d-A*f||^2

% f0 = Initial guess at location of the minimum

% res = d - A*f0, the current residual

% fdef = The default image

% Afunc = Name of function which applies A to a vector

% Lfunc = Name of function which applies L to a vector

% lambda = Weighting between solution seminorm and data misfit

% S = matrix with search directions as its columns

%

% fnew = Position of minimum within subspace

% cpred = Predicted value of ||d-A*fnew||^2

% wpred = Predicted value of ||L*(fnew-fdef)||^2

% Sze Tan, University of Auckland, July 1998

nsrch = size(S,2);

pref = feval(Lfunc,f0-fdef);

w0 = pref’ * pref;

c0 = res’ * res;

fprintf(’Square of regularization semi-norm (current) = %f\n’,w0);

fprintf(’Square of data misfit norm (current) = %f\n’,c0);

AS = zeros(length(res),nsrch);

LS = zeros(length(pref),nsrch);

for k = 1 : nsrch

AS(:,k) = feval(Afunc,S(:,k));

LS(:,k) = feval(Lfunc,S(:,k));

end

Hc = AS’ * AS; Hw = LS’ * LS;

Gc = AS’ * res; Gw = -LS’*pref;

c = (Hc + lambda^2 * Hw) \ (Gc + lambda^2 *Gw);

cpred = c0 + c’*Hc*c - c’*Gc - Gc’*c;

wpred = w0 + c’*Hw*c - c’*Gw - Gw’*c;

fprintf(’Square of regularization semi-norm (predicted) = %f\n’,wpred);

fprintf(’Square of data misfit norm (predicted) = %f\n\n’,cpred);

fnew = f0 + S * c;

69

Notice that for the minimization in the subspace, it is only necessary to be able to apply A
and L to vectors. It only remains for us to calculate the search directions for the minimization.
The negative gradient of L is

−∇L (f) = −λ2LtL (f − f∞) +At (d−Af)

In order to calculate this, we also need functions which will apply Lt and At to a vector.
A method which works reasonably well in practice is to calculate LtL (fl−f∞), At (d−Af l)
as search directions on the first iteration (l = 0), and to append the direction fl − fl−1 on
subsequent iterations. This is illustrated in the code fragment below:

S = [];

while 1,

pref = feval(Lfunc,f - fdef);

res = data - feval(Afunc,f);

S(:,1) = feval(Ahfunc,res); S(:,2) = -feval(Lhfunc,pref);

test = 1 - abs(S(:,1)’*S(:,2)./(norm(S(:,1))*norm(S(:,2))));

fprintf(’Test statistic = %f\n’,test);

[fnew,cpred,spred] = subsearch(f,res,fdef,Afunc,Lfunc,lambda,S);

S(:,3) = fnew - f;

f = fnew;

keyboard % Pause to allow user to view result

end

In this example, the functions whose names are in Afunc and Lfunc apply the matrices A
and L to a vector, while the functions whose names are in Ahfunc and Lhfunc apply the
(conjugate) transposes (AH and LH) to a vector. The search directions are placed in the
columns of S. The quantity test indicates whether the vectors ∇C and ∇Ω are parallel to
each other, as they should be at the optimal point. When the value of test is sufficiently
small, the algorithm may be deemed to have converged.

70

4

Elements of Probability and Statistics

“the true logic for this world is the calculus of Probabilities, which takes ac-
count of the magnitude of the probability which is, or ought to be, in a reasonable
man’s mind.” James Clerk Maxwell, 1850

4.1 The role of probability in inverse problems

So far we have looked at the deterministic part of inverse problem theory, which involves
examining how an ‘image’ is transformed into the ‘data’ via the physics of the measurement
process. That defines the forward map, with the näıve reconstruction method being to invert
that map.

When the forward map is ill-posed, or ill-conditioned, direct inversion leads to a poor solution
since errors on the measured data, and other uncertainties, are amplified by the inverse
map to the point where the recovered image is dominated by those errors. The methods of
regularization and truncation in chapter 3 provide algorithms to tame ill-posed computational
problems, and can produce very useful solutions, as we have seen. But a crucial component
is still missing: how to produce a proper analysis of the certainty, or rather uncertainty, of
the estimates? How much, indeed, can we trust the predictions given by our models, often
simulating complex physical systems? Here is the main contribution that probilistic methods
can provide.

The examples in section 3.9 showed how regularization can perform very poorly in terms of
quantifying uncertainties in estimates, even in very simple examples. We discovered that, in
the presence of uncertainties, there is no single notion of ‘best’. Thus, the paradigm that
“inverse problems can be solved by selecting a criterion for ‘best’ and then optimizing with
respect to it” is fundamantally flawed (though may be useful in some cases).

All available data contains measurement errors, so the estimated image is uncertain to some
degree. A natural question then arises: if measurement noise corrupting the data follows some
statistics, what is the distribution over the possible solutions after the estimation procedure?
The same question can be extended to model error: given that our model of the physical
measurement process is always just that, a model, what is the uncertainty in a reconstructed
image or in subsequently calculated properties of the image?

We take a ‘Bayesian’ approach, in which all uncertainties are modelled via probability. The
main sources of uncertainty that we will consider are: measurement errors, model mis-
specification, and a priori uncertainty in the solution1. We do not distinguish between the

1If we were certain about the solution in advance, there would be no difficulty in finding the solution.

71

possible origins of uncertainty, i.e., whether the true value is unknowable, or we are simply
unwilling or unable to determine its value. This means that all uncertain quantities are mod-
elled as a random variable with a distribution of its own. The (a priori) stochastic modelling
of the unknown image provides a flexible way of stating constraints or knowledge about the
image, and generalizes the role of the regularizing functional by supplying information about
the unknown image in directions that are not determined by the measurements.

Bayesian analysis adopts the subjective notion of probability, emphasizing, as we have above,
the state of knowledge we can have about uncertain quantities or predictions. This fits the
physics and engineering notion of learning from measurement that corresponds to refining
knowledge about an underlying physical reality. Many Bayesian physicists adopt Bayesian
methods because of the work of the physicist R. T. Cox who proved that any consistent ma-
nipulation of degrees of plausibility represented by real numbers is equivalent to the Bayesian
calculus.

An alternative is the frequentist notion that probability refers to frequency in a random exper-

iment. The regularization methods we have seen are exactly the ‘ridge regression’ estimators
in frequentist statistics. A lively debate has taken place within the discipline of statistics
for the past hunderd years, or so, over which of the Bayesian and frequentist notions is ‘cor-
rect’. A practically oriented researcher might find the dispute somewhat academic, since in a
real modeling project we are seldom concerned about the ‘true’ interpretation of parameters,
notwithstanding that estimates for unknowns should be physically plausible. More often we
are interested in the reliability of model predictions. The debate in statistics seems to be
reaching a maturity, with some hints that the outcome may be that Bayesian and frequentist
notions represent contrasting, in some sense ‘dual’, paradigms for inference.

The goal in any probabilistic analysis is to characterise all solutions that are consistent with
data and models. This is quite different to the deterministic methods that seek a single ‘best’
solution. The distribution over possible solutions is usually too unweildy to be considered
a useful solution. Instead, useful solutions are provided by summary statistics that give
estimates and uncertainties of the unknown true image, and other quantities of interest.
The task of calculating summary statistics is always well defined, even if the original inverse
problem is ill-posed. In particular, there being no need to formulate an inverse with a unique
solution, as in regularization methods.

One substantial practical advantage of the Bayesian framework is that it allows our inference
to be informed by physical modelling, in a way that permits not only useful engineering
solutions but also valid scientific answers as well. It is strightforward to consider non-linear
forward problems and non-additive noise processes, as well as the mid-level and high-level
representations.Those stochastic models for the unknown image have a role that is analagous
to the regularizing functional, of providing information about the unknown image for as-
pects that are not determined by the measurements. These advantages come at the cost of
increased modelling and computation. Those features of Bayesian modeling, inference, and
computation will be discussed in later chapters. In the remainder of this chapter we develop
some of the elementary tools from probability and statistics that we will need.

4.2 Random variables and their properties

A (scalar, vector-valued) quantity with uncertain value is acalled a (scalar, multivariate)
random variable.

72

For example, the outcome of a coin toss is uncertain before the coin is tossed, and could take
either of the values ‘heads’ or ‘tails’. If we denote the outcome by X, then X is a random
variable taking values in the set {heads, tails}. After the coin toss, X will take one of these
values, that we call a realization of the random variable. When we are being careful, we
denote random variables by an upper case letter, such as X above, and realizations by the
lower case letter, such as x = ‘heads’.

The probability of the outcome that the random variable X takes the value x is written
P (X = x) which is read as ‘the probability that X is equal to x’. For a fair coin, this
probability is 1/2 in both of the cases x = ‘heads’ and x = ‘tails’. More generally, we write
the probability that X lies in some set of outcomes A, called an event, as

P (X ∈ A) .

The distribution over the random variable X is the rule P that assigns a (real, positive)
probability to each event.

4.2.1 Probability density functions

Continuous random variables

The probability density function πX(x) of a real random variable X allows the probability
that X lies in the range a ≤ X < b to be evaluated as the integral of the density function
between a and b. i.e.,

P(a ≤ X < b) =

∫ b

a
πX(x) dx (4.1)

Probability density functions are real, non-negative and normalized so that

∫ ∞

−∞
πX(x) dx = 1 (4.2)

Discrete random variables

If we allow the probability density to be a generalized function, it is possible to use the same
formalism for discrete random variables. If πk is the probability that X = k where k comes
from a discrete set K, the probability density function for X is

πX(x) =
∑

k∈K
πkδ(x− k) (4.3)

Multivariate random variables

The generalization to several random variables is immediate. For example if X1, X2, ..., Xn

are random variables, the probability density πX1X2...Xn is defined so that an integral over
a n-dimensional region gives the joint probability that the point (X1,X2, ...,Xn) lies in the
specified region. i.e.,

Pr(a1 ≤ X1 < b1 and a2 ≤ X2 < b2 and ... and an ≤ Xn < bn) =
∫ b1

a1

dx1

∫ b2

a2

dx2...

∫ bn

an

dxn πX1X2...Xn(x1, x2, ..., xn) (4.4)

73

We often use a vector notation, writing X for the random variable and πX(x) for the proba-
bility density.

Starting from a joint probability density, we can find the probability density of a subset of
the variables by integrating over all possible values of the variable(s) we do not want, e.g.,

πX(x) =

∫ ∞

−∞
dy

∫ ∞

−∞
dz πXY Z(x, y, z) (4.5)

This process is called marginalization and πX(x) is called a marginal probability density.

Given random variables X and Y , the conditional probability of X given Y is defined by

πX|Y (x|y) =
πXY (x, y)

πY (y)
(4.6)

In the joint space of possible values of X and Y , we are effectively restricting our attention
to cases in which Y = y. Out of these, we are interested in the probability that X is equal
to x.

From the definition, it is easy to see that

πXY (x, y) = πX|Y (x|y)πY (y) = πY |X(y|x)πX(x) (4.7)

This relationship between the two conditional probabilities πY |X and πX|Y is called Bayes’

theorem. As we shall see later, this is a result that we will use redeatedly.

4.2.2 Cumulative distribution functions

The cumulative distribution function ΠX(x) of a single real-valued random variable X gives
the probability that X is less than some specified value, i.e.,

Pr(X < x0) = ΠX(x0) (4.8)

This is related to the probability density function πX(x) by

ΠX(x) =

∫ x

−∞
πX(ξ) dξ (4.9)

It is then easy to see that

1. ΠX(−∞) = 0

2. ΠX(∞) = 1

3. ΠX is a monotonically non-decreasing function

4. πX(x) = dΠX(x)/dx

For discrete valued random variables, the cumulative distribution function has step disconti-
nuities. This is consistent with the delta functions in the probability density function.

In several dimensions, the cumulative distribution function ΠX1X2...Xn(x1, x2, ..., xn) is simply
the probability that X1 < x1 and X2 < x2 and ... and Xn < xn. Thus

πX1X2...Xn(x1, x2, ..., xn) =
∂nΠX1X2...Xn

∂x1∂x2...∂xn
(4.10)

74

4.2.3 Transformation of a random variable

Suppose that X is a random variable and that Y = π (X) is the random variable which is
obtained by applying the function f to X. Given the probability density πX (x), we wish to
determine the probability density πY (y) of Y . It is easy to find the cumulative distribution
function of Y since

Pr (Y < y) = Pr (f (X) < y) (4.11)

=

∫ ∞

−∞
u (y − f (x)) πX (x) dx, (4.12)

where u (x) is the unit step. The probability density of Y is found by differentiation

πY (y) =
∂

∂y

(∫ ∞

−∞
u (y − f (x))πX (x) dx

)

(4.13)

=

∫ ∞

−∞
δ (y − f (x)) πX (x) dx. (4.14)

In order to be able to apply this result, we need to be able to handle δ functions with non-
trivial arguments. Recall that in distribution theory, the idea is to define the action of a
distribution on a test function in such a way that the usual formal algebraic manipulations
can still be carried out. Let us consider the meaning of δ (g (x)) where g (x) is differentiable
and has a single zero at x0 at which g′ (x0) is non-zero. Given a test function φ (x), we require
that

〈δ (g (x)) , φ (x)〉 = lim
h→0

〈δh (g (x)) , φ (x)〉 = lim
h→0

1

h

∫

{x:|g(x)|<h/2}
φ (x) dx (4.15)

where δh (x) is equal to 1/h in the interval |x| < h/2 and is zero elsewhere. Since g has an
isolated zero at x0, for sufficiently small h, the only values of x of interest are those in a small
interval around x0. Within this interval we may approximate g (x) by its Taylor series about
x0, namely

g (x) ≈ g (x0) + (x− x0) g
′ (x0) = (x− x0) g

′ (x0) (4.16)

and so to this order of approximation

|g (x)| < h

2
iff |x− x0| <

h

2 |g′ (x0)|
(4.17)

Thus

〈δ (g (x)) , φ (x)〉 = lim
h→0

1

h

∫

|x−x0|< h

2|g′(x0)|
φ (x) dx =

φ (x0)

|g′ (x0)|
, (4.18)

and so under these conditions,

δ (g (x)) =
δ (x− x0)

|g′ (x0)|
. (4.19)

If we find that g (x) has several zeros {xi} within the interval of integration, this readily
generalizes to

δ (g (x)) =
∑

i

δ (x− xi)

|g′ (xi)|
(4.20)

Examples

75

1. Suppose that the random variable Θ is uniformly distributed in the range [0, 2π) and
that X = tanΘ. Find the probability density for X and check that it is properly
normalized.

Since Θ is uniformly distributed, we see that πΘ (θ) = (2π)−1. By the above result,

πX (x) =

∫ 2π

0
δ (x− tan θ) πΘ (θ) dθ (4.21)

=
1

2π

∫ 2π

0
δ (x− tan θ) dθ (4.22)

For a given value of x > 0, there are two values of θ within the range [0, 2π) which satisfy
x − tan θ = 0, namely θ1 = tan−1 x and θ2 = π + tan−1 x. If we set g (θ) = x − tan θ,
we find that

g′ (θ) = − sec2 θ (4.23)

and so
∣
∣g′ (θ1)

∣
∣ =

∣
∣g′ (θ2)

∣
∣ = sec2

(
tan−1 x

)
= 1 + x2 (4.24)

Thus

δ (x− tan θ) =
δ
(
θ − tan−1 x

)

1 + x2
+

δ
(
θ − π − tan−1 x

)

1 + x2
. (4.25)

Substituting into the integral (4.22) yields

πX (x) =
1

2π

∫ 2π

0

[

δ
(
θ − tan−1 x

)

1 + x2
+

δ
(
θ − π − tan−1 x

)

1 + x2

]

dθ (4.26)

=
1

π (1 + x2)
(4.27)

Similarly, it is easy to check that this expression also gives the probability density for
x < 0. The integral of πX (x) over all x yields unity, indicating that it is properly
normalized.

2. Suppose that X is distributed with probability density

πX (x) =
1

σ
√
2π

exp

(

− x2

2σ2

)

(4.28)

and Y = X2, determine the probability density of Y.

By the theorem,

πY (y) =

∫

δ
(
y − x2

) 1

σ
√
2π

exp

(

− x2

2σ2

)

dx (4.29)

For y > 0, we see that there are two values of x, namely ±√
y which satisfy y− x2 = 0.

Furthermore we find that
[
∂

∂x

(
y − x2

)
]

x=±√
y

= [−2x]x=±√
y = ∓2

√
y (4.30)

Hence

δ
(
y − x2

)
=

δ
(
x−√

y
)

∣
∣−2

√
y
∣
∣

+
δ
(
x+

√
y
)

∣
∣2
√
y
∣
∣

. (4.31)

76

Substituting into (4.29) yields

πY (y) =

∫
(

δ
(
x−√

y
)
+ δ

(
x+

√
y
)

2
√
y

)

1

σ
√
2π

exp

(

− x2

2σ2

)

dx

=
1

σ
√
2πy

exp
(

− y

2σ2

)

. (4.32)

Exercise

Show that if ΠX (x) is the cumulative distribution function of a random variable X, it is
possible to generate samples of X by starting with a random variable Y which is uniformly
distributed within the range [0, 1] and setting X = Π−1

X (Y) .

4.2.4 Multivariate Transformations

If we have a set of random variables X1,X2, ...,Xn and a tranformation f : Rn → R
m, we can

find the joint probability density of Y1, Y2, ..., Ym where Yi = πi (X1,X2, ...,Xn) by computing

πY1...Ym (y1, ..., ym) =

∫

...

∫

δ (y1 − π1 (x1, ..., xn)) ...δ (ym − πm (x1, ..., xn))

× πX1...Xn (x1, ..., xn) dx1...dxn (4.33)

An important example of the use of this theorem is to find the probability density of the sum
of two random variables, i.e., when Y = X1 +X2. In this case

πY (y) =

∫ ∫

δ (y − (x1 + x2)) πX1X2 (x1, x2) dx1 dx2

=

∫

πX1X2 (x1, y − x1) dx1 (4.34)

where we have carried out the integration over x2 which collapses due to the presence of
the δ function. If further we assume that the random variables are independent, so that
πX1X2 (x1, x2) = πX1 (x1)πX2 (x2) , this reduces to

πY (y) =

∫

πX1 (x1)πX2 (y − x1) dx1 (4.35)

which is seen to be the convolution of the two probability densities.

4.2.5 Example: The χ2 probability density

Consider the probability density of Y = X2
1 +X2

2 where

πX1X2 (x1, x2) =
1

2π
exp

(

−1

2

(
x21 + x22

)
)

(4.36)

By the transformation rule,

πY (y) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
δ
(
y − x21 − x22

)
exp

(

−1

2

(
x21 + x22

)
)

dx1dx2 (4.37)

77

It is convenient to change to polar coordinates. This yields

πY (y) =
1

2π

∫ 2π

0

∫ ∞

0
δ
(
y − r2

)
exp

(

−r2

2

)

r dr dθ (4.38)

Converting the delta function, we see that there the argument is zero if r =
√
y. At this

point
∂

∂r

(
y − r2

)
= −2r (4.39)

Hence

δ
(
y − r2

)
=

δ
(
r −√

y
)

2
√
y

(4.40)

and so

πY (y) =
1

2π

∫ 2π

0

∫ ∞

0

δ
(
r −√

y
)

2
√
y

exp

(

−r2

2

)

r dr dθ

=
1

2
exp

(

−y

2

)

for y > 0 (4.41)

This is called the χ2 probability density with two degrees of freedom, being the sum of squares
of two independent zero-mean unit-variance Gaussian distributions. In more dimensions,
the sum of squares of N independent zero-mean unit-variance Gaussian distributions has
probability density

πY (y) =
1

2N/2Γ (N/2)
y

N
2
−1 exp

(

−y

2

)

(4.42)

which is the χ2 probability density with N degrees of freedom. This may readily be derived
from the fact that the volume element inN dimensions for integrands with spherical symmetry
may be written as

dx1dx2....dxN =
2πN/2

Γ (N/2)
rN−1 dr. (4.43)

4.2.6 Expected values

The expected value of a function h of the random variable X is an average of the function
values h(x) weighted by the probability that X takes on the value x, i.e.,

E[h(X)] =

∫ ∞

−∞
πX(x)h(x) dx (4.44)

Similarly, if we have a function of more than one random variable, the weighted average is
taken over the joint probability density of the variables, i.e.,

E[π(X1,X2, ...,Xn)] =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2...

∫ ∞

−∞
dxn πX1X2...Xn(x1, x2, ..., xn)h(x1, x2, ..., xn)

(4.45)
For example, the expectation value of the product of two random variables X and Y is

E[XY] =

∫ ∞

−∞

∫ ∞

−∞
xyπXY (x, y) dxdy (4.46)

78

The expected value of a random variable X is called the mean of X, and is denoted µX . The
expected value of (X − µ)2 is called the variance of X and is denoted σ2

X . The n’th moment

mn of X is the expected value of Xn, i.e.,

mn = E[Xn] =

∫ ∞

−∞
xnπX(x) dx (4.47)

We see that m0 = 1, m1 = µ and m2 = σ2 + µ2.

The operation of taking the expected value is linear, hence

E[ah(X) + bg(Y)] = aE[h(X)] + bE[g(Y)] (4.48)

This follows directly from the linearity of the integral.

An important pathological case

It is not always the case that the moments of a probability density exist and are finite. A
simple example is the Cauchy probability density

πi(x) =
a

π (a2 + x2)
(4.49)

The second moment of this probability density is infinite.

4.2.7 Independent and uncorrelated random variables

Two random variables are said to be independent if their joint probability density is equal
to the product of the individual probability densities. Thus random variables X and Y are
independent if and only if

πXY (x, y) = πX(x)πY (y) (4.50)

From the definition of conditional probability, X and Y are independent if and only if

πY |X(y|x) = πY (y) (4.51)

Physically, this means that knowledge of the value of one of the random variables X gives no
information about the value of the other random variable Y since our state of knowledge of
Y conditional on knowing that X = x is the same as if we had no information about X.

Similarly, a collection of random variables X1,X2, ...,Xn is said to be independent iff their
joint probability density function factorizes

πX1X2...Xn(x1, x2, ..., xn) = πX1(x1)πX2(x2)...πXn(xn) (4.52)

Theorem 4.1 If X and Y are independent random variables, E[XY] =E[X]E[Y]

Proof Do as an exercise.

Two random variables X and Y are said to be uncorrelated if E[XY] =E[X]E[Y]. Thus
independent random variables are uncorrelated, but the converse is not true.

Exercise 4.1 Construct two uncorrelated random variables which are not independent.

79

Example 4.1 The maximum of N independent random variables

Suppose that X1, ..., XN are a set of N independent identically-distributed random variables
each with probability density πX (x) and suppose that Y = max (X1, ...,Xn). Find the
probability density of Y .

It is easiest to consider the cumulative distribution function. The probability that Y < y is
the probability that all of X1, X2, ...,XN are less than y. Thus

ΠY (y) = ΠX1 (y)ΠX2 (y) ...ΠXN
(y)

=

(∫ y

−∞
πX (x) dx

)N

(4.53)

Differentiating to get the probability density,

πY (y) = Π′
Y (y) = NπX (y)

(∫ y

−∞
πX (x) dx

)N−1

(4.54)

4.2.8 Probability density of the sum of independent random variables

Let X and Y be random variables with joint probability function πXY (x, y). We wish to find
the probability density πZ (z) of the random variable Z which is the sum of X and Y.

Consider first the cumulative distribution function FZ (z) . By definition,

FZ (z) = Pr (Z < z) = Pr (X + Y < z) =

∫ ∞

−∞
dx

∫ z−x

−∞
dy πXY (x, y) (4.55)

where the double integral is taken over the portion of the (x, y) plane for which x + y < z.
Substituting y′ = x+ y in the second integral yields

FZ (z) =

∫ ∞

−∞
dx

∫ z

−∞
dy′ πXY

(
x, y′ − x

)
(4.56)

Differentiating with respect to z yields the desired probability density function

πZ (z) =

∫ ∞

−∞
dxπXY (x, z − x) . (4.57)

If X and Y are independent, the joint density function factorizes and so

πZ (z) =

∫ ∞

−∞
dxπX (x)πY (z − x) = (πX ∗ πY) (z) (4.58)

which we recognize as the convolution of the probability density functions. The characteristic
function of Z is thus the product of the characteristic functions of X and Y

χZ(s) = χX(s)χY (s). (4.59)

This result generalizes to the situation of more than two independent variables.

Another way of seeing that this result holds is by considering the algebra of expectation
values

χZ(s) = E [exp (isZ)] = E [exp (is (X + Y))]

= E [exp (isX) exp (isY)] = E [exp (isX)] E [exp (isY)]

= χX(s)χY (s). (4.60)

80

where the factorization of the expectation value is possible because of the independence of
the random variables.

Similarly if we consider Z = aX+ bY, you should check that χZ(s) = χX(as)χY (bs) and that
the inverse transform of this characteristic function yields the probability density

πZ (z) =
1

|ab|

∫

πX

(u

a

)

πY

(
z − u

b

)

du (4.61)

4.3 Some special probability distributions

4.3.1 The Gaussian probability density

The random variable X is said to be Gaussian or normally distributed if its probability
density is of the form

πX(x) =
1

σ
√
2π

exp

(

−(x− µ)2

2σ2

)

(4.62)

where µ and σ2 are the mean and variance ofX respectively. The corresponding characteristic
function is

χX(s) = exp(jsµ) exp

(

−1

2
σ2s2

)

(4.63)

For a Gaussian random variable, the probability density is completely specified once we know
the mean and the variance.

Now consider the sum of two Gaussian distributed random variables. If µX , µY , σ
2
X and σ2

Y

are the means and variances of X and Y respectively, the characteristic function of the sum
Z = X + Y is the product of the individual characteristic functions. That is,

χZ(s) = exp(jsµX) exp

(

−1

2
σ2
Xs2

)

exp(jsµY) exp

(

−1

2
σ2
Y s

2

)

(4.64)

= exp[js(µX + µY)] exp

[

−1

2
(σ2

X + σ2
Y)s

2

]

(4.65)

It is easy to see that Z is also Gaussian distributed. The mean of Z is µX + µY and
the variance of Z is σ2

X + σ2
Y . Similarly, the sum of more than two independent Gaussian

distributed random variables is also Gaussian distributed. The mean of the sum is the sum
of the means and the variance of the sum is the sum of the variances.

Exercise: Note that this last result is more generally true. By linearity of the expectation
value, it is easy to see that the mean of the sum of two random variables is always the sum
of the individual means, whether or not the random variables are independent. Show that
the variance of the sum of two random variables is equal to the sum of the variances of the
individual variables, provided that the random variables are uncorrelated.

4.4 The central limit theorem

Let us now consider what happens when we add together N zero-mean independent identically
distributed random variables. We shall assume that each of the random variables possesses
n’th cumulants κn for every n.

81

Let Z = X1 +X2 + ...+XN . It is clear that this has zero mean and that the n’th cumulant
of Z is Nκn. In particular, the variance of Z is σ2

Z = Nκ2. Consider the normalized random
variable Z/σZ . This has unit variance and its n’th cumulant is

Nκn
σn
Z

= N1−n
2

κn

κ
n/2
2

(4.66)

As N becomes large, we see that the n’th cumulant of the normalized random variable tends
to zero for all n > 2. We thus conclude that for large N , Z/σZ tends to a Gaussian random
variable with zero mean and unit variance. This is a special case of the central limit theorem.
In its more general form which applies to non-identically distributed random variables, it
essentially states that

The probability density of the sum of N well-behaved independent random
variables tends to a Gaussian distribution whose mean is the sum of the individual
means and whose variance is the sum of the individual variances

More precisely if Z = X1+X2+ ...+XN , µ = µ1+µ2+ ...+µN is the sum of the means and
σ2 = σ2

1 + σ2
2 + ... + σ2

N is the sum of the variances of X1,X2, ...,XN , then the probability
density of (Z − µ)/σ tends to a zero-mean Gaussian distributed variable of unit variance as
N becomes large.

Note that the individual probability density functions need not be Gaussian nor identically
distributed.

To make this more general statement true, it is necessary to restrict the individual random
variables so that each has a finite variance and that the probability for |Xi| to be large is
very small. These are contained in the Lindeberg condition which requires that for all t > 0,

lim
N→∞

1

σ2

N∑

i=1

∫

|x−µi|>tσ
dx (x− µi)

2πi(x− µi) = 0 (4.67)

where πi is the probability density of the i’th random variable and σ2 is the sum of the N
variances.

A rigorous proof of the central limit theorem under these general conditions is quite difficult
since we do not even assume the existence of the cumulants.

Notes:

1. It is interesting to repeatedly convolve a uniform probability density with itself repeat-
edly to see how the probability density of the sum approaches a Gaussian. If we add
together 12 independent random numbers each generated from a uniform distribution
in the range

[
−1

2 ,
1
2

]
, the sum closely approximates a zero-mean unit variance Gaus-

sian distributed variable. (This is sometimes used for computer generation of normal
random variables, but the method is quite slow).

2. As an example showing how the central limit theorem can fail (through violation of the
Lindeberg condition), consider the sum of N identical independent Cauchy distributed
random variables with

πi(x) =
a

π (a2 + x2)
(4.68)

82

Show (as an exercise) that the variance of the Cauchy distribution is infinite and that
the sum of any number of such distributions is also a Cauchy distribution and does not
tend to the normal distribution.

4.5 Vector-valued random variables

A vector-valued random variable X with n components is simply a convenient notation for a
collection of n random variables. The probability density πX(x) is a joint probability density
as defined above.

The mean vector (denoted by µX) is simply the vector of the mean values of the components
of X. This is the first moment of X

µX = E[X] =

∫

xπX(x) d
nx (4.69)

The k’th component of E[X] is E[Xk].

The second moment of X is the expectation value of products of pairs of components of X.
For an n component random vector, there are n2 pairs which can be conveniently arranged
in an n× n matrix called the correlation matrix ΦXX

ΦXX = E[XXt] =

∫

xxt πX(x) d
nx (4.70)

The kl’th component of ΦXX is E[XkXl]. It is clear that the correlation matrix is symmetric.

Just as we defined the variance in the case of a scalar-valued random variable, we define the
covariance matrix of a vector-valued random variable. This is also an n× n matrix ΓXX

ΓXX = E[(X− µX)(X− µX)
t] = ΦXX − µXµ

t
X (4.71)

The kl’th component of ΓXX is E[XkXl]−E[Xk]E[Xl]. Like the correlation matrix, the co-
variance matrix is also symmetric. The diagonal elements of the covariance matrix are the
variances of the random variables.

Higher order moments are more complicated to write down as the m’th moment is a rank
m tensor with nm components. The k1k2...km’th component of the m’th moment tensor is
E[Xk1Xk2 ...Xkm].

The multivariate form of the characteristic function is a scalar-valued function of the n
dimensional vector variable s defined by

χX(s) = E[exp(jstX)] (4.72)

If we expand the exponential as a power series as in the scalar case, we see the successive
moments appearing in the expansion. The first three terms are

χX(s) = 1 + jstµX − 1

2!
stΦXXs− ... (4.73)

The inverse relationship which expresses the probability density of X in terms of χX(s) is

πX(x) =
1

(2π)n

∫

χX(s) exp(−jstx) dns

=
1

(2π)n

∫ ∞

−∞
ds1...

∫ ∞

−∞
dsn χX(s1, ..., sn) exp[−j(s1x1 + s2x2 + ...+ snxn)] (4.74)

83

This is essentially an n dimensional inverse Fourier transform (except for the sign of the
exponent).

If the components of the vector-valued random variable X are independent, the joint proba-
bility factorizes

πX(x) = πX1(x1)πX2(x2)...πXn(xn) (4.75)

As a consequence E[XkXl] =E[Xk]E[Xl] if k 6= l. The covariance matrix ΓXX is then diagonal
with the variances on the diagonal. The characteristic function also factorizes as

χX(s) = χX1(s1)χX2(s2)...χXn(sn) (4.76)

4.6 Linear transformations and correlations

In this section we consider the generalization of the result that the characteristic function
of the sum of two independent random variables is the product of the two characteristic
functions. We shall see that the effect of a linear transformation is to change the correlations
between the various components of a vector-valued random variable.

Theorem: If χX(s) is the characteristic function of the n dimensional vector-valued random
variable X and the m dimensional vector-valued random variable Y is related to X by the
linear transformation

Y = AX (4.77)

where A is an m by n matrix, the characteristic function of Y is given by

χY(s) = χX(A
ts) (4.78)

Proof:

χY(s) = E[exp(jstY)] = E[exp(jstAX)] = E[exp(j{Ats}tX)]

= χX(A
ts) (4.79)

It is worthwhile to consider in more detail the consequences of this deceptively simple result.
We first note that it is a generalization of the result for the sum of two independent random
variables in two ways. Firstly, there can be an arbitrary number of random variables contained
in X and these need not be independent. Secondly, instead of a simple summation, we can
now handle an arbitrary linear combination which can result in several random variables
contained in Y.

To see how this reduces to the previous result, suppose that n = 2, m = 1 and that A = (1 1).
Then Y = AX becomes Y = X1 +X2. By the theorem,

χY (s) = χX(A
ts) = χX

((
s
s

))

(4.80)

Since the components of X are independent, the characteristic function factorizes, i.e.,

χX

((
s1
s2

))

= χX1(s1)χX2(s2) (4.81)

Hence
χY (s) = χX1(s)χX2(s) (4.82)

84

which is just the product of the two characteristic functions. The probability densities are
thus related by a convolutional relationship.

Another important consequence of this theorem may be seen by expanding the characteristic
functions as power series in s just as in (4.73). On the left-hand side we have

χY(s) = 1 + jstµY − 1

2!
stΦYYs− ... (4.83)

and on the right-hand side,

χX(A
ts) = 1 + j(Ats)tµX − 1

2!
(Ats)tΦXX(A

ts)− ... (4.84)

= 1 + jst(AµX)−
1

2!
st(AΦXXAt)s− ... (4.85)

Comparing these two expansions we see that

µY = AµX (4.86)

ΦYY = AΦXXA
t (4.87)

These results can also be seen more directly from the definitions. For example, if Y = AX,

ΦYY = E
[
YYt

]
= E

[
AX (AX)t

]
= E

[
AXXtAt

]

= AE
[
XXt

]
At = AΦXXA

t.

Exercise: Show that the covariances are also related by

ΓYY = AΓXXAt (4.88)

Thus we see precisely how a linear transformation affects the moments of the random vari-
ables. The relationship for the mean is exactly as we would expect since the process of taking
an expected value is linear. Higher-order moments are similarly related via further terms in
the expansions.

Exercise: Show that ifX1,X2, ...,Xn are independent random variables with means µ1, µ2, ..., µn

and variances σ2
1 , σ

2
2 , ..., σ

2
n, then if Z = c1X1 + c2X2 + ... + cnXn, the mean of Z is c1µ1 +

c2µ2 + ...+ cnµn and the variance of Z is c21σ
2
1 + c22σ

2
2 + ...+ c2nσ

2
n.

4.6.1 Physical meaning of the covariance

In order to more fully appreciate the above result, we pause to consider what the covariance
matrix is telling us about the random variables that make up the vector X. For simplicity
suppose that n = 2 so that the pair of random variables (X1,X2) may be represented by a
point on a plane. On successive trials, we obtain a scatter of points whose density on the
plane is given by the probability density. The mean (µ1, µ2) is the centroid of these points.
The variance of Xi is Γii =E[(Xi − µi)

2] which is (proportional to) the moment of inertia of
the points when the plane is rotated about the axis Xi = µi. These give the diagonal terms
of the covariance matrix.

The off-diagonal covariance term Γ12 is E[(X1−µ1)(X2−µ2)]. For a given point, the product
(X1 − µ1)(X2 − µ2) is positive in the first and third quadrants (respectively negative in the
second and fourth quadrants) where the two deviations (X1 − µ1) and (X2 − µ2) have the

85

same (respectively opposite) signs. The variables are uncorrelated and Γ12 = 0 if on average
the deviations are as likely to have the same signs as opposite signs. Γ12 > 0 and we say the
variables are positively correlated if on average the points lie in the first and third quadrants
rather than in the second and fourth quadrants. This means that if one of the variables is
on one side of its mean (say X1 > µ1), on average we expect the other variable to be on the
same side of its mean (i.e., X2 > µ2). We are not certain that this will be the case, only that
as the variables become more highly positively correlated, the sign of the deviation of one of
the variables becomes a more reliable indication that the sign of the other deviation is the
same. The opposite holds true if Γ12 < 0 and the variables are negatively correlated. In this
case, the sign of one deviation makes it likely that the other deviation is of the opposite sign.

Exercise 4.2 By expanding E
[
((X1 − µ1) + α(X2 − µ2))

2
]
as a quadratic in α show that

Γ2
12 ≤ Γ11Γ22 where Γij =E[(Xi−µi)(Xj −µj)] are the components of the covariance matrix.

(Hint: For all α the expectation value must be non-negative. This leads to a condition on
the discriminant of the quadratic in α.)

Exercise 4.3 Show that the correlation and covariance matrices of a vector-valued random
variable are positive definite matrices. (Note: A real-valued n by n matrix A is positive
definite if it is symmetric and for all non-zero n dimensional column vectors x, xtAx is
positive.)

4.7 The multivariate Gaussian and its characteristic function

First let us consider the probability density and characteristic function of n independent
identically distributed Gaussian random variables with zero mean and unit variance. The
probability density and characteristic function of the k’th random variable Xk are

πk(xk) =
1√
2π

exp

(

−1

2
x2k

)

(4.89)

χk(sk) = exp

(

−1

2
s2k

)

(4.90)

Since the random variables are independent, the joint probability density and characteristic
function are the product of those for the individual variables

πX(x) =
1

(2π)n/2
exp

(

−1

2
(x21 + x22 + ...x2n)

)

(4.91)

χX(s) = exp

(

−1

2
(s21 + s22 + ...+ s2n)

)

= exp

(

−1

2
sts

)

(4.92)

The mean vector is µX = 0 and the correlation and covariance matrix are ΓXX = ΦXX = I
the n by n identity matrix. Now consider applying the linear transformation defined by the
non-singular n by n matrix A. i.e., we consider Y = AX. The mean and correlation matrix
of Y are given as above by

µY = 0 and ΓYY = ΦYY = AAt (4.93)

By the theorem the characteristic function of Y is

χY(s) = exp

(

−1

2
(Ats)t(Ats)

)

= exp

(

−1

2
stΓYYs

)

(4.94)

86

The probability density is found from the characteristic function by calculating (4.74). As
shown in the appendix, the result is

πY(y) =
1

√

(2π)n det(ΓYY)
exp

(

−1

2
ytΓ−1

YY
y

)

(4.95)

Notice how the covariance matrix appears in the expression for the characteristic function
while the inverse of the covariance matrix appears in the probability density.

The exponent of a multivariate Gaussian is a quadratic form in the variable y. We may write

πY(y) =
1

√

(2π)n det(ΓYY)
exp

(

−1

2
Q(y)

)

(4.96)

where Q(y) = ytΓ−1
YY

y. Since the matrix Γ−1
YY

is positive definite (being the inverse of a
positive definite matrix), the contours Q(y) =const form ellipsoids whose principal axes are
along the eigenvectors of ΓYY and whose principal axis lengths are proportional to the square
roots of the eigenvalues of ΓYY. These contours join points of equal probability density.

If the mean of Yk is µk rather than zero, the probability density and characteristic function
become

πY(y) =
1

√

(2π)n det(ΓYY)
exp

(

−1

2
(y − µY)tΓ−1

YY
(y − µY)

)

(4.97)

χY(s) = exp

(

jstµY − 1

2
stΓYYs

)

(4.98)

These describe a general multivariate Gaussian random variable.

Exercise: If we start from an n dimensional multivariate Gaussian random variable Y and
take a linear combination Z = AY, show that Z also has the form of a multivariate Gaussian.
Thus an arbitrary linear combination of Gaussian variables is Gaussian.

4.A Characteristic functions

The characteristic function of a real continuous random variable X is defined by

χX(s) = E[exp(jsX)] =

∫ ∞

−∞
exp(jsx)πX(x) dx (4.99)

This is almost the same as the Fourier transform of πX(x) except for the sign of the exponent.
The inverse transform relationship is

πX (x) =
1

2π

∫ ∞

−∞
exp(−jsx)χX(s) ds. (4.100)

If we differentiate χX(s) with respect to s, the effect in the integral is to multiply the integrand
by jx. Thus,

χ′
X(s) =

∫ ∞

−∞
jxπX(x) exp(jsx) dx (4.101)

χ′
X(0) =

∫ ∞

−∞
jxπX(x) dx = jm1 (4.102)

87

Evaluating the derivative at s = 0 gives j times the mean (the first moment) of X. Successive
differentiation leads to the rule

χ
(k)
X (0) = jkmk (4.103)

Thus all the moments of the random variable can be derived from the characteristic function.
We can also see this by expanding the exponential in the definition of the characteristic
function as a power series.

χX(s) = E[exp(jsX)] = E

[∞∑

k=0

(jsX)k

k!

]

(4.104)

=

∞∑

k=0

jkE
[
Xk
]

k!
sk (4.105)

=

∞∑

k=0

jkmk

k!
sk (4.106)

This is the Taylor series expansion of χX(s) about s = 0. The coefficient of sk is χ
(k)
X (0)/k!

which again leads to the relationship (4.103).

An important pathological case

It is not the case that a complete set of moments defines the characteristic function uniquely.
This is because two characteristic functions can differ by a function whose derivatives of all
orders vanish at zero. Indeed it is possible to find two different probability densities which
have exactly the same (finite) moments of all orders.

4.A.1 Inversion of a Gaussian characteristic function

We need to calculate the integral

πY(y) =
1

(2π)n

∫

exp

(

−1

2
stΓs− jsty

)

dns (4.107)

The first step is to complete the square in the exponent. Consider the matrix analogue of a
perfect square

1

2
(s− s0)

tΓ(s− s0) =
1

2
stΓs− stΓs0 +

1

2
st0Γs0 (4.108)

where we have used the fact that stΓs0 = s0
tΓs since they are both scalars. Rearranging this

gives

−1

2
stΓs+ stΓs0 = −1

2
(s− s0)

tΓ(s− s0) +
1

2
st0Γs0 (4.109)

This can be made equal to the exponent in the integrand if we set −jy = Γs0 or s0 = −jΓ−1y.
The integral thus becomes

πY(y) =
1

(2π)n

{∫

exp

(

−1

2
(s− s0)

tΓ(s− s0)

)

dns

}

exp

(

−1

2
ytΓ−1y

)

(4.110)

We finally consider the integral in the braces. Remembering that Γ = AAt where A is
non-singular, we introduce the new variables

u = At(s− s0) (4.111)

88

The integral is over all of s space which maps to all of u space. The Jacobian determinant
for the transformation relating the volume elements in the two spaces is

dnu = det(At)dns (4.112)

Hence

∫

exp

(

−1

2
(s− s0)

tΓ(s− s0)

)

dns =

∫
exp

(
−1

2(u
tu)
)

det(At)
dnu

=
(2π)n/2

det(At)
(4.113)

Since det(A) = det(At) and det(A) det(At) = det(Γ), we see that det(At) =
√

det(Γ).
Hence

πY(y) =
1

√

(2π)n det(Γ)
exp

(

−1

2
ytΓ−1y

)

(4.114)

as claimed.

4.A.2 Characteristic function of the χ2 probability density

Let us consider first the χ2 density with one degree of freedom. This is the probability density
of the square of a zero-mean unit-variance Gaussian distribution which is

πY (y) =
1√
2πy

exp
(

−y

2

)

for y > 0 (4.115)

We wish to calculate the characteristic function which is

E [exp (jsY)] =

∫ ∞

0

1√
2πy

exp
(

−y

2

)

exp (jsy) dy

=

√

1

2π

∫ ∞

−∞
exp

(
1

2
(2js− 1) u2

)

du

=

√

1

2π

√
2π

1− 2js
=

1√
1− 2js

. (4.116)

where we have used the change of variable y = u2 and the fact that the integrand is even in
the second line. For the χ2 distribution with N degrees of freedom, we simply take the sum
of N independent variables, each distributed as χ2 with one degree of freedom. By the rule
for the sum of random variables, the characteristic function is

χY (s) =
1

(1− 2js)N/2
(4.117)

4.B Cumulants of a random variable

When independent random variables are added together, the mean of the sum is the sum of
the means and the variance of the sum is the sum of the variances. The mean and variance
are the first two of a set of quantities called cumulants which add together when independent
random variables are added together.

89

The cumulants κn of a random variable X with probability density FX(x) are defined by

logχX(s) =

∞∑

n=1

κn
(js)n

n!
(4.118)

They are just the coefficients of the power series expansion of the natural logarithm of the
characteristic function. When two independent random variables are added together, we
multiply together their characteristic functions. This corresponds to the addition of the
logarithms of the characteristic functions. Thus the n’th cumulant of the sum is simply the
sum of the n’th cumulants of the individual probability densities.

The first few cumulants are related to the moments as follows

κ1 = m1 (4.119)

κ2 = m2 −m2
1 (4.120)

κ3 = m3 − 3m2m1 + 2m3
1 (4.121)

κ4 = m4 − 3m2
2 − 4m3m1 + 12m2m

2
1 − 6m4

1 (4.122)

These expressions are considerably simpler for random variables with zero means (m1 = 0).
To gain a physical picture of the significance of the first four moments, κ1 is the mean, κ2
is the variance, κ3/κ

3/2
2 is the skewness and κ4/κ

2
2 is the excess or kurtosis which measures

whether the “skirts” of the probability density are broader (κ4 > 0) or narrower (κ4 < 0)
than for a Gaussian of the same mean and variance.

Important note: For a Gaussian probability density, only the first two cumulants are non-
zero since the logarithm of the characteristic function is a quadratic in s.

Exercise: Show that if X is a random variable and Y = aX for some a > 0, the n’th
cumulant of Y is an times the corresponding cumulant of X.

(Hint: First show that the probability density of Y is πY (y) = (1/a)πX (y/a).)

4.C Exercises

1. Show that if Y = aX1 + bX2, then

πY (y) =
1

|ab|

∫

πX1X2

(
u

a
,
y − u

b

)

du. (4.123)

Hence find the probability density function of 3X1 + 4X2 when each of X1 and X2 is
uniformly distributed in the range [0, 1].

2. Find the probability density of Z = X/Y if X and Y have joint probability density

πXY (x, y) =
1

2π
exp

(

−x2 + y2

2

)

. (4.124)

Answer: πY (y) = 1
π(1+y2)

.

3. Find the probability density of R =
√
X2 + Y 2 if X and Y are distributed according

to the density (4.124). Answer: πR (r) = r exp
(
−r2/2

)
, or r > 0.

90

5

Bayesian statistical inference and parameter
estimation

5.1 Forward and inverse probability

Bayesian statistics provides a theory of inference which enables us to relate the results of
observation with theoretical predictions. Consider the process of trying to understand some
physical system. Theoretical physics constructs a model which tells us what observations
to expect if certain causes are present. Abstractly, a set of causes can be represented by a
parameter vector x, and the result of the observations by an observation vector y.

Model of
System

✲ ✲Cause
Parameters

x

Effect
Observation

y

Theory tells us f(y|x), the conditional probability of the observation given the cause. This is
usually called the forward probability density. Based on observations (and possibly control
of some of the parameters), experimental physics involves trying to deduce the values of the
parameters, under the assumption that the model is valid. Experimentalists want f(x|y),
which is the conditional probability of the possible causes, given that some effect has been
observed. This inverse probability represents our state of knowledge of x after measuring
y. In the context of inverse problem theory, x is the image and y is the data.

Examples:

1. A rod of length x is measured with precision σ. If we assume Gaussian errors in the
measurement model, theory predicts that an observation y has the probability density

f(y|x) = 1

σ
√
2π

exp

[

−1

2

(
y − x

σ

)2
]

(5.1)

Given one or more measurements yi, what is our state of knowledge of x?

2. A radioactive solid with a long half-life decays at rate x disintegrations per second so
that in time T , the probability of obtaining y counts is Poisson distributed, namely

f(y|x) = exp (−xT) (xT)y

y!
(5.2)

91

In various intervals each of duration T , yi counts were observed. What can we say
about x?

3. A photograph y is taken of a scene x with an out-of-focused camera so that

y = F (x) + n (5.3)

where F denotes a “blurring operator” and n denotes a noise vector. The forward
probability density is given by

f(y|x) = fN (n = y − F (x)) (5.4)

where the noise statistics and hence pdf fN are assumed to be known. Given y, how
can we process it to recover x, and how confident can we be of the result?

5.2 Bayes’ theorem

The central result that helps us solve all of these problems is Bayes’ theorem, which is based
on the relationship between joint and conditional probabilities.

Given events A and B,

Pr(A,B) = Pr(A|B) Pr(B) = Pr(B|A) Pr(A) (5.5)

Hence,

Pr(A|B) =
1

Pr (B)
Pr(B|A) Pr(A) (5.6)

This (and extensions to include more than 2 events) is called Bayes’ theorem. It relates
forward probabilities Pr(B|A) to inverse probabilities Pr(A|B).

In terms of continuous parameters and observations, the density functions satisfy

f(x|y) = 1

f (y)
f(y|x)f(x) (5.7)

We shall interpret this equation as telling us how we should change our state of knowledge
of x as a result of making an observation which yields the result y.

• On the right-hand side, f(x) is the probability function which represents what we know
(or believe) about the parameter x before making the observation. It is known as the
prior probability and summarizes our initial state of knowledge about the parameter.

• On the left-hand side, f(x|y) is the probability function which tells us what we know
about the parameter x after making the observation. It is called the posterior prob-
ability.

• The way we change the prior probability into the posterior probability is to multiply
by two factors. One of these is f(y|x) which is just the forward probability function
which is determined by theoretical physics. Notice that in this application we think
about this as a function of x for a fixed observation y. When viewed in this way, the
forward probability is called the likelihood function.

92

• The remaining factor f(y)−1 can be determined by normalization since we know that
the sum of the posterior probability distribution function over all possible causes must
be equal to one.

We now consider a specific example to illustrate the operation of this single most important
result in statistical inference and data analysis.

5.2.1 The tramcar problem

A town has n tramcars labelled from 1 to n. On k separate occasions, I see trams numbered
m1, m2,..., mk. Based on this information, what can I say about the number of tramcars in
the town?

At first sight, all that one can say as a result of seeing tramcar m is that there are at least m
tramcars in the town. However one intuitively feels that if one has lived in the town for some
time the highest numbered tramcar that one has ever seen will be close to the actual number
of tramcars. We shall now see how Bayes’ theorem can make these considerations precise.

Let us start off by analyzing the effect of the first observation, which is of tramcar m1. The
parameter we wish to estimate is n so writing down Bayes’ theorem we obtain

Pr(n|m1) =
1

Pr (m1)
× Pr(m1|n)× Pr(n) (5.8)

Prior modelling: Before making any observations, let us suppose that I believe that it
is equally probable that there are any number between 1 and N tramcars. Later we shall
consider the effect of changing N . This corresponds to the choice

Pr(n) =

{
1/N if n ≤ N
0 otherwise

(5.9)

Likelihood: This is just the forward probability function. If there happen to be n tramcars
in town, the probability that I see tramcar m is 1/n if m ≤ n and it is impossible to see a
tramcar numbered > n. Thus

Pr(m|n) =
{

1/n if m ≤ n
0 otherwise

(5.10)

This likelihood function can be represented by the following diagram. Each cross denotes
particular values of n and m and the function value associated with each cross is written next
to it.

93

✻

✲
1 2 3 4 5 6

1

2

3

4

5

6

1
1
2

1
2

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
5

1
5

1
5

1
5

1
5

1
6

1
6

1
6

1
6

1
6

1
6

n

m

...

...

...

...

...

...

We consider the posterior probability as a function of n for a fixed observation m1. From
the expression (5.8) for the posterior probability, this involves looking across a row of the
likelihood function. For example, if m1 = 3, the section through the likelihood function is
Pr(3|n) which appears as shown.

✲

✻

1 2 3 4 5 6 7

0.1

0.2

0.3 ✻

✻
✻

✻
✻

...

1
3

1
4

1
5 1

6 1
7

n

Pr(3|n)

The posterior probability function is found by multiplying together the prior and the like-
lihood. The normalization term 1/Pr(m1) does not depend on n and so we can say that
Pr(n|m1) is proportional to

Pr(n|m1) ∝
{

1/(nN) if m1 ≤ n ≤ N
0 otherwise

(5.11)

Since the sum over all n must be unity, we easily determine Pr(m1) =
∑N

n=m1
(nN)−1. From

the posterior probability, we notice that

• It is not possible for there to be fewer than m1 tramcars,

• The posterior probability is a sampled section of a hyperbola from m1 to N ,

94

• If we approximate the discrete posterior probability function by a continuous one, the
mean of the posterior probability function is

µ ≈
∫ N

m1

n Pr(n|m1) dn =
N −m1

logN − logm1
(5.12)

At this stage the mean tends to infinity if we let N tend to infinity. This indicates that
the posterior probability function is still strongly dependent on the prior probability
that we chose. With only one observation, we have not yet learnt very much and are
still highly influenced by our prior suppositions.

5.3 Multiple Observations

Now let us suppose that we see tramcar number m2. We want to compute Pr(n|m1,m2).
Again using Bayes’ theorem, assuming that the observations are independent,

Pr(n|m1,m2) =
Pr(n,m1,m2)

Pr(m1,m2)
=

Pr(m2|n,m1) Pr(n,m1)

Pr(m2) Pr(m1)

=
1

Pr(m2)
Pr(m2|n) Pr(n|m1) (5.13)

So for independent observations, we can use the posterior probability for the first observation
Pr(n|m1) as the prior probability for the second observation. In effect, the likelihood functions
are multiplied together. For k independent observations,

Pr(n|m1,m2, ...,mk) =
1

Pr(m1) Pr(m2)...Pr(mk)
×Pr(mk|n) Pr(mk−1|n)...Pr(m1|n)×Pr(n)

(5.14)
This formalizes the process of how we learn from a succession of independent observations.

For the tramcar problem, after k observations we find that the posterior probability function
is

Pr(n|m1,m2, ...,mk) =

{
N/nk if max(m1,m2, ...,mk) ≤ n ≤ N
0 otherwise

(5.15)

The normalization constant N is chosen so these probabilities sum to one. We see that

• M = max(m1,m2, ...,mk) is a lower bound for the number of tramcars.

• With more observations (k large), the posterior probability falls off more sharply with
n

• In the approximation in which the discrete probability function is approximated by a
continuous probability density, the mean of the posterior probability is

µ =

(
k − 1

k − 2

)

M

[
1− (M/N)k−2

1− (M/N)k−1

]

for k > 2 (5.16)

As N → ∞, µ → (k − 1)M/(k − 2) which is just slightly larger than M . We see
that as k is increased, the cutoff N in the prior makes little difference. This means
that the observations are becoming more important to the inference than our initial
presuppositions.

95

• For large N , the variance of the posterior probability is approximately

σ2 =

(
k − 1

k − 3

)[
M

k − 2

]2

(5.17)

This becomes small as k increases. We can thus be more confident of the total number
of tramcars as we see more of them.

• The likelihood function for k observations Pr (m1,m2, ...,mk|n) depends on the obser-
vations m1, ...,mk only through the two quantities k and M = max(m1,m2, ...,mk).
When a likelihood function is completely determined by a set of quantities, these quan-
tities are said to form a set of sufficient statistics for the estimation process. In other
words, a set of sufficient statistics summarizes all the information present in the set of
data which is relevant for the estimation of the desired quantities.

• In the Bayesian viewpoint, our complete state of knowledge of the parameter(s)
after the observations is given by the posterior probability density function. Often, we
are asked for a “best estimate” of the parameters rather than the entire representation
of our state of knowledge. The procedure for selecting such an estimate is not part of
the framework and can sometimes be problematical. Various choices are to use the MAP
(maximum à posteriori) estimate, the mean of the posterior probability, the maximum
likelihood estimate or some other ad hoc estimator.

Exercises

1. In one of three boxes there are two gold coins, in another there are two silver coins and
in the third there are one gold coin and one silver coin. I go to one of the boxes at
random and extract a coin. Given that this coin is gold, what is the probability that
the other coin in that box is also gold? Repeat the problem if there are a hundred coins
in each box, all gold in the first, all silver in the second and one gold and ninety-nine
silver in the third.

2. In a town, 80 percent of all taxis are blue and the other 20 percent are green. One
night, an accident involving a taxi occurred, and a witness who is able to identify the
colour of a taxi under the lighting conditions with 75 percent accuracy testifies that the
colour of the taxi involved was green. Compute the posterior probability of the colour
of the taxi after receiving the testimony.

3. A bag contains 80 fair coins and 20 double-headed coins. A coin is withdrawn at random
and tossed, yielding a head. What is the probability that the coin is fair? How many
times must the coin be tossed before we can be 99 percent sure that it is double-headed?

We shall now embark on a series of examples showing how these principles may be applied
to a variety of problems.

96

5.4 Estimating a quantity with Gaussian measurement errors

Consider the problem of measuring the length x of a rod using a measuring instrument for
which

f(y|x) = 1

σ
√
2π

exp

(

−(y − x)2

2σ2

)

(5.18)

This means that each observation comes from a Gaussian of standard deviation σ centred
about the true value of x.

Experimentally, we measure the length several times and obtain an independent sequence of
measurements {y1, y2, ..., yN}. The likelihood function for these is

f(y1, y2, ..., yN |x) = 1

(2πσ2)N/2
exp

(

−
N∑

i=1

(yi − x)2

2σ2

)

(5.19)

The posterior probability for x starting with a prior probability of the form f(x) is

f(x|y1, ..., yN) =
N

(2πσ2)N/2
exp

(

−
N∑

i=1

(yi − x)2

2σ2

)

f (x) (5.20)

where N = 1/f(y1, ..., yN) is a normalization constant. We are interested in seeing the right-
hand side as a function of x. This is facilitated by expanding the squares and collecting terms
in various powers of x yielding

f(x|y1, ..., yN) =
N

(2πσ2)N/2
exp

[

−
(

N

2σ2

)

x2+

(
1

σ2

) N∑

i=1

yix−
(

1

2σ2

) N∑

i=1

y2i

]

f(x)

(5.21)

∝ exp

− N

2σ2

(

x− 1

N

N∑

i=1

yi

)2

 f (x) (5.22)

where all terms not explicitly dependent on x have been included in the proportionality.
We see that the effect of collecting the data is to multiply the prior f(x) by a Gaussian of
mean

∑
yi/N and standard deviation σ/

√
N . If the prior probability f(x) before making

the measurement is approximately uniform in a sufficiently large interval around
∑

yi/N ,
the posterior probability function will be almost completely determined by the data. For
a Gaussian posterior probability density, the mean, median and mode all coincide, so there
is little doubt as to what should be quoted as the estimate. The variance of the posterior
probability represents our confidence in the result. We thus quote the mean of the data points
m =

∑
yi/N as the best estimate for x and give its uncertainty as σ/

√
N .

5.4.1 Estimating the measurement error as well as the quantity

In the above we assumed that the error in each datum σ is known. Often it is unknown
and we seek to estimate σ as well as x from the data. This can be readily done within the
Bayesian formulation by considering σ as an additional parameter. We can write

f(x, σ|y1, y2, ..., yN) = N f(y1, y2, ..., yN |x, σ) f(x, σ) (5.23)

97

where the likelihood f(y1, y2, ..., yN |x, σ) has the same form as (5.19) above. Evaluating this
yields

f(x, σ|y1, y2, ..., yN) =
N

(2πσ2)N/2
exp

(

− N

2σ2

[

(x−m)2 + s2
])

f(x, σ) (5.24)

where m = (1/N)
∑

yi and s2 = (1/N)
∑

y2i − m2. This is a joint distribution for x and
σ. Again if the prior probability is approximately constant, the first factor (essentially the
likelihood function) determines the posterior probability. In the Bayesian framework, this
posterior probability density summarizes all that we know about the parameters after making
the measurement. In the following, we shall find the following integral useful

∫ ∞

0

1

σk
exp

(

− A

σ2

)

dσ =
Γ
(
k−1
2

)

2
√
Ak−1

. (5.25)

For a flat prior, the normalized form of the posterior probability is given by

f(x, σ|y1, y2, ..., yN) =

√

8

Nπ

(
Ns2

2

)N/2
1

s2Γ
(
1
2N − 1

)
σN

exp

(

−1

2

N

σ2

[

(x−m)2 + s2
])

.

(5.26)
The peak of this function is given by

xMAP = m (5.27)

σMAP = s (5.28)

where “MAP” stands for maximum à posteriori estimate, i.e., the mode of the posterior
probability density. This is also the maximum likelihood estimate, since the prior is
assumed to be flat.

From the joint posterior probability density, we can find the marginal probability densities
by integrating over the variable(s) which we do not wish to consider. The results are

f (x|y1, y2, ..., yN) =
Γ
(
1
2N − 1

2

)

Γ
(
1
2N − 1

)
sN−2

π
1
2

[

(x−m)2 + s2
]N−1

2

, (5.29)

f (σ|y1, y2, ..., yN) =
2

Γ
(
1
2N − 1

)

(
Ns2

2

)N/2−1
1

σN−1
exp

(

−1

2

N

σ2
s2
)

. (5.30)

In Figures 5.1 and 5.2 we show the joint and marginal posterior probability densities for the
cases of N = 3 and N = 50 measured data points. These graphs are plotted in terms of
the variables (x−m) /s and σ/s in order to make them independent of m and s. The joint
posterior probability density is shown as a contour diagram. The contour label λ indicates the
contour at which the joint posterior probability density has fallen to a value of exp

(
−λ2/2

)

of the peak value.

When giving estimates of x and σ, the peak of the posterior probability may not be a good
representative of the probability distribution. This is especially the case for σ when N is
small, since the posterior probability of σ is quite asymmetrical. It is possible (with some
effort) to find analytic expressions for the mean of these probability densities,

E [x|y] = m, (5.31)

E [σ|y] =
√

N

2

Γ
(
1
2N − 3

2

)

Γ
(
1
2N − 1

) s ∼
(

1 +
7

4N
+

145

32N2
+ ...

)

s. (5.32)

98

Figure 5.1: Posterior probability densities after N = 3 observations.

For finite N, the asymmetry in the posterior probability for σ pushes the mean higher than
the mode which is at s. The covariance of the posterior probability distribution is

E
[

(∆x)2 |y
]

= E
[
x2|y

]
− (E [x|y])2 = s2

N − 4
∼
(

1

N
+

4

N2
+ ...

)

s2, (5.33)

E [(∆x) (∆σ) |y] = E [xσ|y]− E [x|y] E [σ|y] = 0, (5.34)

E
[

(∆σ)2 |y
]

= E
[
σ2|y

]
− (E [σ|y])2

=

1

N − 4
− 1

2

(

Γ
(
1
2N − 3

2

)

Γ
(
1
2N − 1

)

)2

Ns2 (5.35)

∼
(

1

2N
+

31

8N2
+ ...

)

s2. (5.36)

The asymptotic approximations hold for large values of N and are based on Stirling’s ap-
proximation for the Γ function, namely

log Γ (z) ∼ 1

2
log (2π)− z +

(

z − 1

2

)

log z +
1

12z
+O

(
1

z3

)

99

Figure 5.2: Posterior probability densities after N = 50 observations

from which we deduce that for large z,

zb−aΓ (z + a)

Γ (z + b)
∼ 1 +

(a− b) (a+ b− 1)

2z
(5.37)

+
1

12

(a− b) (a− b− 1)
(

3 (a+ b− 1)2 − a+ b− 1
)

2z2
+O

(
1

z3

)

. (5.38)

We see that it is not until N > 4 that these probability densities have finite variances. Using
the above expressions, we can give estimates of x and σ as well as the uncertainties in these
quantities. Notice that the uncertainty of our estimate of x still falls as N−1/2 for large N
just as when the value of σ is known. However, for smaller values of N, this uncertainty is
larger than when σ is known.

5.5 Estimating radioactive source strength and half-life

Suppose that a radioactive source has strength which decays with time according to the law

S (t) = S0 exp (−αt) (5.39)

100

where the half-life is (ln 2) /α. At time t = 0, we turn on an ideal Geiger counter and record
the counts which occur until time T. From the record of counts, how should we estimate the
values of S0 and of α?

In order to carry out a Bayesian analysis, we want the posterior probability of the parameters
S0 and α given a particular record of counts. The forward problem requires us to find the
probability of getting the particular sequence of counts given values of S0 and α. We note
that we can record the times at which the counts occur. Let us divide the interval [0, T] into
short subintervals of duration ∆t starting at t0, t1, ..., tk, ..., tT/∆t−1. Each of these intervals
is assumed to be so short that there is at most one count in an interval. The probability that
a count occurs in the subinterval starting at tk is S (tk)∆t.

Let us suppose that there were a total of N counts in the interval [0, T] and that they occured
in the subintervals starting at tk1 , tk2 , ..., tkN . The probability of this particular record is the
product of the probabilities that counts did occur in the specified subintervals and that they
did not occur in the others. This is

Pr (tk1 , tk2 , ..., tkN |S0, α) = (∆t)N

[
N∏

i=1

S (tki)

]
∏

k 6=ki

[1− S (tk)∆t] (5.40)

By Bayes’ theorem,

f (S0, α|tk1 , ..., tkN) ∝ f (S0, α)

[
N∏

i=1

S0e
−αtki

]
∏

k 6=ki

[
1− S0e

−αtk∆t
]

(5.41)

log f (S0, α|tk1 , ..., tkN) = const + log f (S0, α) +N log S0

− α

(
N∑

i=1

tki

)

+
∑

k 6=ki

log
[
1− S0e

−αtk∆t
]

(5.42)

As ∆t becomes small, we can expand the last logarithm and retain only the linear term

∑

k 6=ki

log
[
1− S0e

−αtk∆t
]
≈ −S0

∑

k 6=ki

e−αtk∆t → −S0

∫ T

0
e−αt dt = −S0

α

(
1− e−αT

)
(5.43)

and so

log f (S0, α|tk1 , ..., tkN) = const + log f (S0, α) +N logS0 − α

(
N∑

i=1

tki

)

− S0

α

(
1− e−αT

)
.

(5.44)

The log likelihood function consists of all terms on the right-hand side excluding that contain-
ing the prior probability density. From the form of this function, it is clear that the sufficient
statistics for this problem are N, the number of counts in the interval and

∑
tki which is the

sum of the decay times. For any data set, we only need to calculate these sufficient statistics
in order to completely determine the likelihood function.

If we assume that the prior is flat, we may examine how the log likelihood varies with the
parameters S0 and α. One possible strategy for estimating S0 and α is to maximize the
likelihood function for the given data, this gives the so-called maximum likelihood estimator.

101

In this example the maximum likelihood estimator of α is the solution of

1− e−αT (1 + αT)

α (1− e−αT)
=

1

N

N∑

i=1

tki (5.45)

and having found α, the estimate for S0 is

S0 =
Nα

1− e−αT
. (5.46)

We can check that this result is reasonable by considering the limit in which the source half
life is very long compared to the measurement time T. In this case, the rate of counts is
constant over the interval and we expect the mean of the count times on the right hand side
of (5.45) to be equal to T/2. It is easy to check that the solution for α in this situation is
α = 0. Substituting into (5.46) gives

S0 =
N

T
. (5.47)

So the maximum likelihood estimate for the source strength when the decay is negligible is
just the total number of counts divided by the counting time, as we might have expected.

In Figure (5.3), we show the contours of the log likelihood function for a source with S0 = 100
and α = 0.5. The counting time was 10 sec, during which time N = 215 counts were detected
and the sum of the decay times was 435.2. If the likelihood is approximated by a Gaussian,
the nσ level corresponds to the probability density falling to exp

(
−n2/2

)
of the peak. In

the figure, contour lines are drawn at the maximum value of the log likelihood minus n2/2.
Recall that the quoted standard error is the projection of the 1σ uncertainty ellipse onto
the coordinate axes. Notice that in this example there is a positive correlation between the
values of S0 and of α. This means that if we increase our estimate of S0, it is also necessary
to increase our estimate of the decay rate in order to maintain the same data misfit.

60 70 80 90 100 110 120 130 140 150

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Initial source strength S0

D
ec

ay
 c

on
st

an
t

α

Equal likelihood contours ln(L / Lmax)=-1/2,-4/2,-9/2,...

Figure 5.3: Contour plot of log likelihood for radioactive decay problem

102

5.6 Approximation of unimodal probability densities by
Gaussians

It is often inconvenient to have to display an entire posterior probability density. If the
posterior probability has a single well-defined peak and falls away from the maximum in
an approximately Gaussian fashion, it is usual to approximate the probability density by a
Gaussian. The key advantage of this is that a Gaussian is completely determined when one
specifies the mean vector and the covariance matrix. Often, the user is not interested in the
off-diagonal elements of the covariance matrix and only the diagonal elements (namely the
variances) are required.

A Gaussian probability density is unimodal and has the property that its logarithm is a
quadratic function of the variables. The maximum of this quadratic form gives the position
of the mean and the curvature (second derivative) at the maximum gives information about
the variance. In order to approximate a unimodal probability density f(x) by a Gaussian
g(x), we adopt the following procedure:

1. Find the logarithm of the probability density log f(x) and find the position of its max-
imum x̂. This gives the mean of the approximate Gaussian.

2. Expand log f(x) using a Taylor series to second order about the point x̂. The linear
terms vanish since x̂ is an extremum. Thus we find

log f(x) = log f(x̂)− 1

2
(x− x̂)tQ(x− x̂) (5.48)

whereQ is the negative of the matrix of second derivatives with components of log f(x),
i.e.,

Qij = −∂2 log p

∂xi∂xj
(5.49)

3. The approximating Gaussian is

g(x) = N exp

[

−1

2
(x− x̂)tQ(x− x̂)

]

(5.50)

where N is a normalization factor. The covariance matrix for the approximating Gaus-
sian is Q−1.

5.6.1 Joint estimation of quantity and measurement error problem

We now return to the posterior probability function for the problem of measuring a constant
with Gaussian distributed errors

f(x, σ|y1, y2, ..., yN) =
N

(2πσ2)N/2
exp

(

− N

2σ2

[

(x−m)2 + s2
])

f(x, σ)

If we suppose that the prior f (x, σ) is flat,

log f(x, σ|y1, y2, ..., yN) = const −N log σ − N

2σ2

[

(x−m)2 + s2
]

(5.51)

103

We find that

∂ logL

∂x
= −N

σ2
(x−m) (5.52)

∂ logL

∂σ
= −N

σ
+

N

σ3

[

(x−m)2 + s2
]

(5.53)

and so the maximum occurs at x̂ = m and σ̂ = s. Calculating the negative of the matrix of
second derivatives and xevaluating this at (x̂, σ̂) yields

Q =

(
N/s2 0
0 2N/s2

)

(5.54)

The approximating Gaussian thus has mean (m, s) and a diagonal covariance matrix Q−1

with variance s2/N in x and variance s2/(2N) in σ. Comparing these with the mean and
covariance of the actual joint posterior probability density given above in equations (5.31)
through (5.36), we see that the answers approach each other when N is large, but there are
significant differences for small N.

5.6.2 Radioactive decay problem

The logarithm of the posterior probability in this case for a flat prior was

log f (S0, α|tk1 , ..., tkN) = const +N logS0 − α

(
N∑

i=1

tki

)

− S0

α

(
1− e−αT

)
. (5.55)

The second derivatives are

∂2

∂S2
0

(

N log S0 − α

(
N∑

i=1

tki

)

− S0

α

(
1− e−αT

)

)

= −N

S2
0

∂2

∂S0∂α

(

N log S0 − α

(
N∑

i=1

tki

)

− S0

α

(
1− e−αT

)

)

= − 1

α2

[
(1 + αT) e−αT − 1

]

∂2

∂α2

(

N log S0 − α

(
N∑

i=1

tki

)

− S0

α

(
1− e−αT

)

)

= −S0

α3

[
2− e−αT

(
T 2α2 + 2Tα+ 2

)]

For the data given above, the inverse covariance matrix is

Q =

(
0.0204 −4.24
−4.24 1650

)

, (5.56)

and the covariance matrix is

Q−1 =

(
105 0.271
0.271 0.00130

)

. (5.57)

The square roots of the diagonal elements give the standard errors in the estimates. Thus
for the data set in the example

S0 = 103± 10 (5.58)

α = 0.47± 0.04. (5.59)

The graph of the Figure 5.4 shows the contours of the approximate Gaussian posterior prob-
ability density (thin lines) superimposed upon the actual posterior probability (thick lines).

104

60 80 100 120 140
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Initial source strength S0

D
ec

ay
 c

on
st

an
t

α

Contours of equal likelihood and Gaussian approximation

Figure 5.4: Gaussian approximation to likelihood function for radioactive decay problem

5.6.3 Interpretation of the covariance matrix

Figure 5.5 shows contours of equal probability of the bivariate Gaussian

f(x1, x2) =
1

2π
√

det(R)
exp

[

−1

2

(
x1 − µ1

x2 − µ2

)t(
Q11 Q12

Q21 Q22

)(
x1 − µ1

x2 − µ2

)]

(5.60)

where

Q =

(
Q11 Q12

Q21 Q22

)

(5.61)

is the inverse covariance matrix and

R = Q−1 =

(
R11 R12

R21 R22

)

(5.62)

is the covariance matrix.

Remember that this is a representation of our state of knowlege of the parameters x1 and
x2. We note the following

• Corresponding to a range of parameter values such as µ − kσ to µ + kσ for a one-
dimensional Gaussian, we have an error ellipsoid in the parameter space. These are
bounded by contours of E = (x−µ)tQ(x−µ) and the probability that E ≤ χ2 is given
by the χ2 distribution with ν degrees of freedom where ν is the number of components
in x.

• The diagonal components of the inverse covariance matrix gives information about the
intersections of the error ellipsoid with the axes. In general, these are not useful as
estimates of the error in the parameter values.

105

x1-m1

x2-m2

(ER11)
1/2

(ER22)
1/2

(E/Q22)
1/2

(E/Q11)
1/2

Contour of (x-m)tQ(x-m) = E

Figure 5.5: The error ellipse

• If we calculate the marginal probability density of one of the parameters, say xk, the
variance of xk is given by the diagonal element Rkk of the covariance matrix. The
standard error of xk is

√
Rkk and this is given by the projection of the error ellipsoid

E = 1 on the k axis.

• The directions of the principal axes of the error ellipsoids are given by the eigenvectors
of R (or of Q). The lengths of the principal axes are related to the eigenvalues of R.

You should be able to prove the above results.

5.7 Estimators and parameter estimation

As mentioned previously, in the Bayesian framework, our state of knowledge of a parameter
or set of parameters x is given by the posterior probability density f (x|y). However, we
are sometimes asked to give a single estimate of the quantity of interest. We have seen
various ways of generating such estimates such as the maximum à posteriori estimate,
the mean of the posterior probability, the maximum likelihood estimate and so on. Besides
these estimators which are based on Bayesian ideas, we may consider any other method of
generating an estimate. Abstractly, an estimator is a function X̂ : y → X̂ (y) that converts
the data vector into a number (or vector) which is our estimate of the quantity of interest.

In the Bayesian approach, we focus on the data that have been collected and try to discover
the parameter values which best account for these data. In more conventional approaches to
statistics, we decide on the estimator and then work out how well this estimator performs
well in the long run. More specifically, we first suppose that the true value of the parameters
x are given and calculate the sampling distribution f (y|x) of the possible data sets. Using
our estimator, we calculate for each y the estimate X̂ (y) . Then by the rule for transformation

106

of variables, we can find the probability density of the estimator

f (x̂|x) =
∫

δ
(

x̂− X̂ (y)
)

f (y|x) dy. (5.63)

If the estimator X̂ is good, we would expect that f (x̂|x) is strongly peaked around x̂ = x. We
would like the estimator to be good for all the parameters x that we are likely to encounter.
It is usual to quantify the distribution of x̂ about x in terms of the first few moments. We
define

• The bias of the estimator for a given true parameter vector x by

B
X̂
(x) = E [x̂|x]− x (5.64)

=

∫ (

X̂ (y)− x
)

f (y|x) dy. (5.65)

This gives the difference between the mean of the estimator over f (y|x)and the true
value of the parameters x. An unbiassed estimator is one for which the bias is zero.

• The mean-square error of an estimator for a given true parameter vector x by

m.s.e.
X̂
(x) = E

[
(x̂− x) (x̂− x)t

∣
∣x
]

(5.66)

=

∫ (

X̂ (y)−x
)(

X̂ (y)−x
)t

f (y|x) dy. (5.67)

For a scalar parameter x we have

m.s.e.X̂ (x) = E
[

(x̂− x)2
∣
∣
∣ x
]

(5.68)

=

∫ (

X̂ (y) − x
)2

f (y|x) dy. (5.69)

• The variance of an estimator for a given true parameter vector x by

var
X̂
(x) = E

[
(x̂−E [x̂|x]) (x̂−E [x̂|x])t

∣
∣x
]

(5.70)

=

∫ (

X̂ (y)−E [x̂|x]
)(

X̂ (y)−E [x̂|x]
)t

f (y|x) dy. (5.71)

For a scalar parameter x we have

varX̂ (x) = E
[

(x̂−E [x̂|x])2
∣
∣
∣x
]

(5.72)

=

∫ (

X̂ (y)−E [x̂|x]
)2

f (y|x) dy. (5.73)

It is easy to show that (check this as an exercise) for any estimator X̂ and for any x,

m.s.e.
X̂
(x) = var

X̂
(x) + B

X̂
(x)B

X̂
(x)t . (5.74)

and for a scalar parameter x, this reduces to

m.s.e.X̂ (x) = varX̂ (x) + BX̂ (x)2 (5.75)

Of course, the best estimators are those which have small bias, variance and mean-square
errors.

107

5.7.1 Examples

1. Suppose that we have samples y drawn from a uniformly distributed random variable
which extends from zero to x. We wish to estimate x from the data y1, ..., yN . Let us
first discuss the properties of the estimator

X̂ (y) =
2

N
(y1 + y2 + ...+ yN) . (5.76)

Since this is just a linear combination of the data, it is easy to calculate the moments
of X̂ in terms of the moments of the data. For a uniform random variable Y extending
from zero to x, we know that

E [y|x] = 1

2
x, (5.77)

E
[
y2|x

]
=

1

3
x2 ⇒ var [y] =

1

12
x2 (5.78)

Hence when N of these independent random variables are added together, the mean
and variances for each variable are just added together. Thus

E
[

X̂ |x
]

=
2

N

(
N

2
x

)

= x (5.79)

var
[

X̂ |x
]

=
4

N2

(
N

12
x2
)

=
x2

3N
(5.80)

The estimate is unbiassed, and the variance and mean square error are both equal to
x2/ (3N) .

2. Using the same data as above, let us consider instead the estimator

X̂ (y) = max (y1, y2, ..., yN) (5.81)

which happens to be the maximum likelihood estimator of x. In order to find the
probability density of X̂, we make use of the result in the previous chapter for the
maximum of a set of independent identically distributed random variables. This is

f (x̂|x) = NpY (x̂|x)
(∫ x̂

−∞
pY (y|x) dy

)N−1

(5.82)

=
N

x

(
x̂

x

)N−1

for 0 ≤ x̂ ≤ x (5.83)

The mean of this distribution is

E
[

X̂
∣
∣
∣ x
]

=

∫ x

0
x̂
N

x

(
x̂

x

)N−1

dx̂ =
Nx

N + 1
(5.84)

The variance of the distribution is

E

[(

X̂ − Nx

N + 1

)2
∣
∣
∣
∣
∣
x

]

=
Nx2

(N + 2) (N + 1)2
(5.85)

108

We see that the estimator is biassed and that the bias is

BX̂ (x) =

(
N

N + 1

)

x− x = − x

N + 1
(5.86)

The mean square error is

m.s.e.X̂ (x) =
Nx2

(N + 2) (N + 1)2
+

(

− x

N + 1

)2

=
2x2

(N + 1) (N + 2)
(5.87)

Note that as N becomes large, the mean-square error of this estimator is much smaller
than that for the estimator which is twice the mean of the yk.

Exercise: Consider the estimator X̂ (y) =
(
N+1
N

)
max (y1, y2, ..., yN) . Show that this is

unbiassed and that its variance and mean-square error are x2/ [N (N + 2)] . The variance
of this estimator is larger than the maximum likelihood estimator but its mean-square
error is smaller.

5.8 Optimal Estimators

5.8.1 The minimum mean-square error estimator

As defined above, the value of the mean-square error is a function of the true value of the
parameters x. If we have a prior probability density f (x) which describes how we believe
the parameters are distributed, we can consider the problem of finding the estimator which
minimizes the prior probability weighted average of the mean-square errors, i.e., we choose
the estimator so as to minimize

E =

∫

f (x)m.s.e.
X̂
(x) dx. (5.88)

Substituting the definition of the mean-square error, we see that

E =

∫ ∫ ∥
∥
∥X̂ (y)− x

∥
∥
∥

2
f (y|x) f (x) dy dx (5.89)

=

∫ ∫ ∥
∥
∥X̂ (y)− x

∥
∥
∥

2
f (x,y) dy dx. (5.90)

To minimize this, we adopt a variational approach. We consider perturbing the estimator
function

X̂ (y) → X̂ (y) + εF̂ (y) , (5.91)

so that

E (ε) =

∫ ∫ ∥
∥
∥X̂ (y) + εF̂ (y)− x

∥
∥
∥

2
f (x,y) dy dx. (5.92)

For the optimal estimator

0 =

[
∂E

∂ε

]

ε=0

= 2

∫ ∫

F̂ (y)t
[

X̂ (y)− x
]

f (x,y) dy dx. (5.93)

109

Since this has to hold for every choice of perturbing function F̂ (y) , we see that

2

∫ [

X̂ (y)− x
]

f (x,y) dx = 0. (5.94)

Thus

X̂ (y) f (y) =

∫

xf (x,y) dx , (5.95)

or

X̂ (y) =

∫

x
f (x,y)

f (y)
dx =

∫

xf (x|y) dx. (5.96)

The optimal estimator in this sense is just the mean over the posterior probability density.

5.8.2 The Cramér-Rao lower bound

The Cramér-Rao lower bound is a relation which gives the minimum variance that an esti-
mator can have for a given bias. It does not give a construction for such minimum-variance
estimators, but is useful for evaluating how near an estimator is to the ideal. The bound is
expressed completely in terms of the forward probability for the data given the parameter
f (y|x) and makes no reference to the ideas of prior probability. For simplicity, let us consider
the case of a single scalar parameter x.

The result is based on the Cauchy-Schwarz inequality which may be stated in the form that
if y is a vector-valued random variable and if F (y) and G (y) are scalar-valued functions of
y, then

|E [F (y)G (y)]|2 ≤ E
[

F (y)2
]

E
[

G (y)2
]

(5.97)

We suppose that we have some estimator X̂ (y)whose variance we wish to bound. Let us
consider the following choice of F and G and suppose that the expectation values are being
taken over the probability density f (y|x) for some fixed x.

F (y) = X̂ (y)− E
[

X̂|x
]

(5.98)

G (y) =
∂

∂x
log f (y|x) (5.99)

Then

F (y)G (y) =
(

X̂ (y)− E
[

X̂|x
]) ∂

∂x
log f (y|x) (5.100)

and

E [F (y)G (y)] =

∫ {(

X̂ (y) − E
[

X̂ |x
]) ∂

∂x
log f (y|x)

}

f (y|x) dy

=

∫ (

X̂ (y)− E
[

X̂ |x
]) ∂

∂x
f (y|x) dy since

∂

∂x
log f (y|x) =

∂
∂xf (y|x)
f (y|x)

=

∫

X̂ (y)
∂

∂x
f (y|x) dy since

∂

∂x

∫

f (y|x) dy = 0

=
∂

∂x

(∫

X̂ (y) f (y|x) dy
)

=
∂E
[

X̂ |x
]

∂x
(5.101)

110

Further, we see that

E
[

F (y)2
]

= E

[(

X̂ (y)− E
[

X̂ |x
])2
∣
∣
∣
∣
x

]

= varX̂ (x) (5.102)

E
[

G (y)2
]

= E

[(
∂

∂x
log f (y|x)

)2
∣
∣
∣
∣
∣
x

]

(5.103)

and so substituting into the Cauchy-Schwarz inequality we have

∂E
[

X̂|x
]

∂x

2

≤ varX̂ (x) E

[(
∂

∂x
log f (y|x)

)2
∣
∣
∣
∣
∣
x

]

(5.104)

By the definition of the bias,

BX̂ (x) = E
[

X̂|x
]

− x (5.105)

varX̂ (x) ≥

(

1 + B′
X̂
(x)
)2

E
[(

∂
∂x log f (y|x)

)2 |x
] (5.106)

This is the statement of the Cramér-Rao lower bound (CRLB). Notice that it gives a
minimum possible value for the variance of any estimator for a given value of x. For the
special case of an unbiassed estimator, we have that

varX̂ (x) ≥ 1

E
[(

∂
∂x log f (y|x)

)2 |x
] (5.107)

An alternative form of the denominator is often convenient. Consider

∂2

∂x2
log f (y|x) = ∂

∂x

(
1

p

∂p

∂x

)

=
1

p

∂2p

∂x2
− 1

p2

(
∂p

∂x

)2

=
1

p

∂2p

∂x2
−
(

∂

∂x
log p

)2

(5.108)

So taking the expectation over f (y|x) we get

E

[
∂2

∂x2
log f (y|x)

∣
∣
∣
∣
x

]

= −E

[(
∂

∂x
log f (y|x)

)2
∣
∣
∣
∣
∣
x

]

(5.109)

since

E

[
1

p

∂2f (y|x)
∂x2

∣
∣
∣
∣
x

]

=

∫
∂2f (y|x)

∂x2
dy =

∂2

∂x2

∫

f (y|x) dy =0. (5.110)

Thus, the CRLB may also be written as

varX̂ (x) ≥

(

1 + B′
X̂
(x)
)2

E
[

− ∂2

∂x2 log f (y|x)
∣
∣
∣ x
] (5.111)

This has an appealing interpretation since it states that the bound is related to the expecta-
tion value of the curvature of the log likelihood function. The term in the denominator
is large when the likelihood function is sharply peaked. For such likelihood functions, it is
possible for estimators to achieve a lower variance than for situations in which the likelihood
function is broad.

Note that in order for us to be able to use the Cramér-Rao lower bound, the function
log f (y|x) must be differentiable with respect to x and not have any singularities in the
derivative.

111

5.8.3 Examples

1. Let us consider estimating the variance v from a set of N Gaussian random variables
with

f (y1, ..., yN |v) = 1

(2πv)N/2
exp

(

− 1

2v

N∑

k=1

(yk − µ)2

)

. (5.112)

From this we see that

∂2

∂v2
log f (y|v) = ∂2

∂v2
log

(

1

(2πv)N/2
exp

(

− 1

2v

N∑

k=1

(yk − µ)2

))

=
1

2v3

(

Nv − 2
N∑

k=1

(yk − µ)2
)

(5.113)

Taking the expectation value over f (y|v) yields

E

[
∂2

∂v2
log f (y|v)

∣
∣
∣
∣
v

]

=
N

2v2
− 1

v3

N∑

k=1

E
[

(yk − µ)2
]

=
N

2v2
− N

v2
= − N

2v2
(5.114)

So the CRLB for the estimator is

varX̂ (x) ≥ 2v2

N

∣
∣
∣1 + B′

X̂
(x)
∣
∣
∣

2

If we use an estimator for the variance given by

V̂ =
1

N

N∑

k=1

[

yk −
(

1

N

N∑

k=1

yk

)]2

, (5.115)

it can be shown that (check!) the estimator has bias

BV̂ (v) = − v

N
, (5.116)

and so by the CRLB

varCRLB ≥ 2v2

N

(

1− 1

N

)2

=
2 (N − 1)2 v2

N3

The actual variance of the estimator can be shown to be (check again!)

varV̂ (v) =
2 (N − 1) v2

N2
(5.117)

The ratio of the CRLB to the actual variance is called the efficiency of the estimate.
In this case

varCRLB

varV̂ (v)
=

N − 1

N
(5.118)

As N becomes large, this efficiency approaches unity, and the estimator is said to be
asymptotically efficient.

112

2. One cannot apply the CRLB to the estimators associated with finding the width of
a uniform distribution since the log likelihood function is −∞ in certain regions, and
there are discontinuities at which it fails to be differentiable.

Note that it is possible to evaluate the variance of an estimator numerically by simulation
and to compare the result with that given by the Cramér-Rao lower bound.

5.9 Data Modelling

We now wish to address some of the practical issues involved in data modelling, which may
be regarded as a way of summarizing data y by fitting it to a “model” which depends on
a set of adjustable parameters x. This model may result from some underlying theory that
the data are supposed to arise from, or it may simply be a member of a convenient class of
functions (such as a polynomial, or sum of sinusoids of unknown amplitude, frequency and
phase). We have seen that the Bayesian approach is to calculate the posterior probability
density for x by using the familiar rule

f (x|y) ∝ f (y|x) f (x) (5.119)

we then estimate x by choosing some measure of the “centre” of the posterior probability
function. Although this is straightforward in principle, it is often difficult to display the
posterior probability density function or to calculate its statistics, because the number of
parameters x is often rather large, and the topology of the posterior probability function
may be complicated and have many local maxima. A variety of approximate methods are
often employed, some of which we shall consider.

By taking the logarithm of the above equation, we may write

log f (x|y) = const − 1

2
E (x;y) +

1

2
S (x) (5.120)

where S (x) = 2 log f (x) and E (x;y) = −2 log f (y|x) . The quantity

E (x;y)− S (x) (5.121)

may be regarded as a figure-of-merit function (or merit function, for short) which is small
when the posterior probability is large. This merit function has two terms, the first E (x;y)
depends both on the data and the parameters, and may be interpreted naturally as a measure
of the misfit between the actual data and the predictions of the model. The second term
S (x) which depends on the prior may be interpreted as a preference function, which is large
when the parameters conform to our preconceptions. It should be clear that finding x which
minimizes E (x;y) alone corresponds to the maximum-likelihood estimate while minimizing
E (x;y)− S (x) corresponds to the maximum à posteriori estimate.

Besides estimating the values of the parameters, there are two additional important issues.
One is to assess whether or not the model is appropriate for explaining the data — this
involves testing the goodness of fit against some statistical standard, and the other is to
obtain an indication of the uncertainties in the estimated parameter values.

113

5.10 Least-Squares for Parameter Estimation

Let us suppose that the noise process is additive and Gaussian distributed so that the
actual data may be written as

y = ŷ (x) + n

where ŷ (x) is the mock data which would have been generated in the absence of noise if
the true parameter vector was x and n represents the noise. The likelihood function is

f (y|x) = f (n = y − ŷ (x)) =
1

(2π)N/2
√
detΓ

exp

[

−1

2
(y − ŷ (x))t Γ−1 (y− ŷ (x))

]

,

(5.122)
where the noise is assumed to have zero mean and covariance matrix Γ. Ignoring a constant,
the misfit function is given by

E (x;y) = (y − ŷ (x))t Γ−1 (y − ŷ (x)) . (5.123)

If the noise samples are independent, the matrix Γ is diagonal with the diagonal elements
being given by the variances. If further all the variances are equal to σ2, then the likelihood
function has the particularly simple form

f (y|x) = 1

(2πσ2)N/2
exp

[

− 1

2σ2
(y − ŷ (x))t (y− ŷ (x))

]

(5.124)

and the misfit is

E (x;y) =
(y − ŷ (x))t (y− ŷ (x))

σ2
=

N∑

k=1

1

σ2
(yk − ŷk (x))

2 (5.125)

which is simply a sum of squares. We shall investigate the process of minimizing this misfit,
or equivalently, maximizing the likelihood function. Thus we see that

Least squares ≡maximum likelihood with independent Gaussian noise

In order to illustrate this process, we consider some specific examples.

5.10.1 Estimating amplitude of a known signal in additive Gaussian noise

Let us suppose that the data consist of N samples from the signal

y (t) = As (t) (5.126)

taken at times t1, t2, ..., tN which need not necessarily be evenly spaced. We shall assume
that s (t) is known but that the amplitude A is to be determined. The components of the
data vector y ∈RN are given by

yk = As (tk) + nk, (5.127)

where nk are samples of the noise. The mock data is

ŷk (A) = As (tk) ≡ Ask (5.128)

114

If we suppose that the noise samples are independent and each have variance σ2, the misfit
function for a given data vector y is

E (y|A) = (y − ŷ (A))t (y − ŷ (A))

σ2
=

N∑

k=1

1

σ2
(yk −Ask)

2 (5.129)

=
1

σ2

(
N∑

k=1

s2k

)(

A−
∑N

k=1 yksk
∑N

k=1 s
2
k

)2

+

N∑

k=1

y2k −

(
∑N

k=1 yksk

)2

∑N
k=1 s

2
k

 (5.130)

where we have completed the square in order to show more clearly the dependence on A.
The maximum-likelihood estimate is given by maximizing the exponent. This leads to the
estimate

Â =

∑N
k=1 yksk
∑N

k=1 s
2
k

(5.131)

We see that in order to obtain the estimate of A, the only function of the data that needs to
be calculated is

N∑

k=1

yksk (5.132)

This may be interpreted as multiplying the measured data by a copy of the known signal and
summing the result (or integrating, in the continuous case). This is the basis of correlation
detectors or lock-in amplifiers.

5.10.2 Estimating parameters of two sinusoids in noise

Let us suppose that the data consist of N samples from the signal

y (t) = A1 cosω1t+B1 sinω1t+A2 cosω2t+B2 sinω2t, (5.133)

taken at times t1, t2, ..., tN which need not be evenly spaced. The quantities A1, A2, B1, B2,
ω1 and ω2 are regarded as the unknown parameters which we wish to estimate. We shall
refer to these parameters collectively by the vector x ∈RM and the components of the data
vector y ∈RN are given by

yk = A1 cosω1tk +B1 sinω1tk +A2 cosω2tk +B2 sinω2tk + nk, (5.134)

where nk are samples of the noise. The mock data is

ŷk (A1, A2, B1, B2, ω1, ω2) = A1 cosω1tk +B1 sinω1tk +A2 cosω2tk +B2 sinω2tk. (5.135)

If we suppose that the noise samples are independent and each have variance σ2, the misfit
function for a given data vector y is

E (y|x) = (y − ŷ (x))t (y− ŷ (x))

σ2
=

N∑

k=1

1

σ2
(yk − ŷk (A1, A2, B1, B2, ω1, ω2))

2 . (5.136)

Minimizing this as a function of the M = 6 parameters may be regarded as an exercise in
multidimensional non-linear optimization. A variety of iterative methods are available, which
generate a sequence of iterates x1,x2, ... which converge to argminx E (x;y). Some of these
are

115

1. Non-linear simplex methods: These work on the principle of evaluating the merit func-
tion on a set of M +1 points called an M simplex. An M simplex is the simplest entity
which encloses a “volume” in M dimensions (e.g., a 2–simplex is a triangle and a 3–
simplex is a tetrahedron), and the idea is to try to enclose the position of the minimum
of the merit function within the volume of the simplex. By applying a series of trans-
formations based on the function values at the vertices, the simplex moves downhill
and (hopefully) shrinks until it is small enough to specify the minimum position to the
desired accuracy. The main advantages of the simplex method are its simplicity, in that
it only requires function evaluations, and its robustness to non-smooth merit functions.
The main disadvantage is its often prohibitively slow speed when M is moderate or
large. The Matlab routine fmins uses the simplex algorithm.

2. Gradient-based methods: Besides using function evaluations, these methods also require
the user to supply the gradient or first derivative of the merit function so that the
algorithm knows how to proceed downhill. The näıve steepest descents algorithm
simply computes the direction of steepest descents at the current xn and proceeds as
far along this direction, i.e., along the line

xn+1 = xn − βn∇E (xn;y) (5.137)

until βn is such that a minimum is achieved, i.e.,

βn = argmin
β>0

E (xn − β∇E (xn;y)) . (5.138)

It then repeats this procedure starting at xn+1 to find xn+2 and so on. Although the
merit function keeps decreasing on each iterate, this algorithm is extremely inefficient
when the contours of the merit function are long ellipses.

3. Conjugate gradient algorithm: The steepest descents method is an example of an it-
erative method which is based on a sequence of line searches along vectors pn called
“search directions”, i.e.,

xn+1 = xn − βnpn (5.139)

Ideally, we would like the search directions to be such that the sequence of minimizations
starting from x0 along the directions p0, ...,pK−1 should give the same result as a
multidimensional minimization over the space

SK = {x0 + b0p0 + ...+ bK−1pK−1 : b0, ..., bK−1 ∈ R} (5.140)

Unfortunately this is not the case unless the search directions pn form a mutually
conjugate set. In the conjugate gradient algorithm, the new search direction on the
iteration n+ 1 is not simply −∇E (xn+1) . Instead, this negative gradient is combined
with a multiple of the previous search direction so that the new search direction is
conjugate to the last

pn+1 = −∇E (xn+1;y) + γnpn (5.141)

where γn is chosen to give conjugacy. It turns out that if the merit function happens
to be exactly quadratic, this procedure ensures that all the pn are mutually conjugate
and so the algorithm reaches the minimum in no more than M iterations. In practise,
inexact arithmetic and the non-quadratic nature of the merit function mean that this is
not always achieved. The advantage of the conjugate gradient algorithm is that it can
be implemented without using very much memory even for large problems. Some minor
disadvantages are the need to carry out line searches and to calculate the derivatives.

116

4. Newton based methods: If we expand the function we wish to minimize in a Taylor
series about the current iterate xn, we find

E (x;y) ≈ E (xn;y) +∇E (xn;y)
t (x− xn) +

1

2
(x− xn)

t∇∇E (xn;y) (x− xn) + ...

(5.142)
where ∇∇E (xn;y) denotes the Hessian matrix of second derivatives taken with respect
to x. The minimum of the quadratic form found by truncating the Taylor series at the
quadratic term is where

0 = ∇E (x;y) ≈ ∇E (xn;y) +∇∇E (xn;y) (x− xn) , (5.143)

This has the solution

x = xn − [∇∇E (xn;y)]
−1 ∇E (xn;y) (5.144)

Since this is only an approximation to the minimum, given that merit functions are in
general non-quadratic, this is used as the next iterate xn+1. Newton methods converge
quadratically in a neighbourhood of a minimum, but can give bad results far from a
minimum where ∇∇E (xn;y) may be nearly singular. It is preferable to use a method
which has the features of the steepest descents algorithm (which is guaranteed to re-
duce the merit function on each iterate) while still far from the minimum, but which
switches to a Newton based method near the minimum. One such algorithm is called
the Levenberg-Marquardt method which sets

xn+1= xn − [λD (xn;y) +∇∇E (xn;y)]
−1 ∇E (xn;y)

where the quantity λ is chosen to be small once we are near the minimum. D is a
diagonal matrix, usually chosen to be the diagonal part of ∇∇E (xn;y) . This ensures
that for large λ, the algorithm takes a small step in a direction which decreases E . Note
that Newton based methods require the storage and inversion of an M ×M matrix on
each iteration, which may be prohibitive if M is large.

Computing the gradient and Hessian matrix of E (x;y) is straightforward for the least-squares
problem. We see that if

E (x;y) =

N∑

k=1

1

σ2
(yk − ŷk (x))

2 , (5.145)

then

∂E
∂xr

= −2

N∑

k=1

[yk − ŷk (x)]

σ2

∂ŷk (x)

∂xr
(5.146)

and

∂2E
∂xr∂xs

= 2

N∑

k=1

1

σ2

[
∂ŷk (x)

∂xr

∂ŷk (x)

∂xs
− [yk − ŷk (x)]

∂2ŷk (x)

∂xr∂xs

]

(5.147)

In practise, the second term in the sum is small compared to the first, either because the
model is weakly non-linear or because the yk − ŷk (x) is essentially noise and so they tend to
be as often positive as negative, leading to cancellation when the sum is taken over k. Thus
it is usual to use

∂2E
∂xr∂xs

≈ 2

N∑

k=1

1

σ2

[
∂ŷk (x)

∂xr

∂ŷk (x)

∂xs

]

(5.148)

117

for Newton based algorithms such as the Levenberg-Marquardt method. We see that both
first and second derivatives of E may be formed from the Jacobian matrix

(Jxŷ)ij =
∂ŷi (x)

∂xj

Linear and Non-linear parameters

In all of the methods for minimizing the merit function, the time needed for finding the
minimum increases as the number of parameters is increased. It is therefore sometimes
advantageous to try to reduce the size of the numerical minimization problem by doing a
part of the minimization analytically. If we return to the problem of the two sinusoids in
noise, we see that the parameters may be divided into two classes. In the first class we have
A1, A2, B1 and B2 on which ŷ depends linearly and in the second class we have ω1 and ω2

on which ŷ depends non-linearly. It turns out to be possible to carry out the minimization
over the linear parameters analytically, thus reducing the size of the search space for our
optimization routines to the number of non-linear parameters alone.

We may write the dependence of ŷ on the parameters as in Eq (5.135) in the form

ŷk =
(
cosω1tk sinω1tk cosω2tk sinω2tk

)

A1

B1

A2

B2

(5.149)

or

ŷ1
ŷ2
...
ŷN

=

cosω1t1 sinω1t1 cosω2t1 sinω2t1
cosω1t2 sinω1t2 cosω2t2 sinω2t2

...
...

...
...

cosω1tN sinω1tN cosω2tN sinω2tN

A1

B1

A2

B2

(5.150)

ŷ = C (xnonlin)xlin (5.151)

where xlin represents the linear parameters {A1, A2, B1, B2} and xnonlin represents the non-
linear parameters {ω1, ω2} . The misfit function is

E (x;y) = E (xlin,xnonlin;y) =
1

σ2
(y− ŷ (x))t (y − ŷ (x))

=
1

σ2
(y −C (xnonlin)xlin)

t (y −C (xnonlin)xlin) (5.152)

The derivatives with respect to the linear parameters may be computed and set equal to zero.
This leads to the following simultaneous equations for xlin

CtCxlin = Cty (5.153)

or
xlin =

(
CtC

)−1
Cty (5.154)

where C is evaluated at the value of the non-linear parameters. Having found the linear
parameters for a particular choice of the non-linear parameters, we can write the misfit
function as

E (xlin (xnonlin) ,xnonlin;y) =
yty− ytC (xnonlin)

[
C (xnonlin)

tC (xnonlin)
]−1

C (xnonlin)
t y

σ2

(5.155)

118

this is only a function of the non-linear parameters which often makes it more convenient
for optimization. We use fmins or some other convenient method of finding xnonlin and then
calculate the linear parameters from this.

The Matlab code below shows how this process is applied to the problem of estimating the
angular frequencies of the two sinusoids and then finding the amplitudes.

% List of times at which data are measured

tlist = linspace(0,6,41)’;

% Synthesize some data with linear parameters xlin = [A_1;B_1;A_2;B_2]

% and non-linear parameters w1 and w2

xlin = [1;1;2;0]; w1 = 1.5; w2 = 2.5;

C = makeC([w1;w2],tlist); yhat = C * xlin;

% and add noise

sigma = 0.5; y = yhat + sigma*randn(size(yhat));

% Use fmins to find the optimal parameters

xnlbest = fmins(’misfit’,[1;2],1,[],tlist,y);

C = makeC(xnlbest,tlist); xlinbest = (C’*C)\(C’*y);

Ebest = misfit(xnlbest,tlist,y)

figure(1); plot(tlist,y,’x’,tlist,C*xlinbest);

xlabel(’Time’); ylabel(’Samples and best fit’);

% Grid of points for calculating misfit

nl = 30;

wlist = linspace(0.1,3.0,nl);

[w1,w2] = meshgrid(wlist,wlist+1e-3);

E = zeros(nl,nl);

for k = 1:nl

w1t = w1(1,k);

for l = 1:nl

w2t = w2(l,1);

E(l,k) = misfit([w1t;w2t],tlist,y);

end

end

figure(2); contour(w1,w2,E,min(min(E))+[1:2:40]);

hold on

plot(xnlbest(1),xnlbest(2),’+’,xnlbest(2),xnlbest(1),’+’);

hold off

xlabel(’w1’); ylabel(’w2’);

save fitdata tlist y xnlbest xlinbest Ebest sigma

This code requires the two supporting functions listed below

function E = misfit(xnl,tlist,y)

%

C = makec(xnl,tlist);

xlin = (C’*C)\(C’*y);

E = sum(abs(y-C*xlin).^2);

119

function C = makec(xnl,tlist)

%

w1 = xnl(1); w2 = xnl(2);

C = [cos(w1*tlist) sin(w1*tlist) cos(w2*tlist) sin(w2*tlist)];

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

Time

Figure 5.6: Samples of the sum of two sinusoids and best fitting model

In Figure 5.6, the noisy samples are drawn together with the best fitting model. Note that
the standard deviation of the noise at each point is taken to be σ = 0.5. The true values of
the parameters and those of the best fitting model are

ω1 ω2 A1 B1 A2 B2

True value 1.5 2.5 1 1 2 0
Estimate 1.40 2.57 1.25 0.73 1.70 0.30

In Figure 5.7, the merit surface as a function of the non-linear parameters ω1 and ω2 is shown
to give an idea of the topology of the function for which the minimization is carried out. We
see that even in this simple example, the surface is quite complicated and there is the danger
of missing the minimum if we start off with an inaccurate initial estimate. At the two (equal)
minima, we find that Emin = 7.4

5.10.3 Determining the adequacy of the model and error estimates for
the parameters

In the Bayesian formalism, we should investigate the posterior probability function (which
is related to the merit function) to see how the probability for the parameter estimates
change away from the point at which the merit function is minimized. In particular, we
are concerned that the posterior probability density may be such that its maximum is not a
good representative of the function, for example because there may be multiple maxima, or
because most of the probability may in fact be located in a low, broad peak away from the

120

ω 1
0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Figure 5.7: Merit function surface for problem of fitting two sinusoids.

maximum. Since the posterior probability (or the likelihood) is a function of many variables
(M = 6 in our example), it is often very difficult to visualize, unless there is a simple analytic
form for the result. One solution is to try to find an algorithm which generates samples of M
variables which are drawn from the posterior probability function. This is a technique which
is possible for some classes of posterior probability functions, and will be discussed in more
detail in the third part of this course.

Often, however, we are unable to handle the posterior probability function because of its
high dimensionality but still wish to make a statement about the quality of our parameter
estimates. To do this, we adopt a different point of view introduced at the end of the last
chapter. Instead on focussing on the particular data set that we collected, we ask what is
the likely range of possible data sets given that the parameters have specified values.

121

True parameters
xtrue

Hypothetical
data set y1

Hypothetical
data set y2

Actual
data set y0

Hypothetical
data set y3

✟✟✟✟✟✟✯

❍❍❍❍❍❍❥

✡
✡
✡
✡
✡
✡
✡
✡✡✣

❏
❏
❏
❏
❏
❏
❏
❏❏❫

Best fit
parameters x̂0

✲

x̂1

x̂2

x̂3

✲

✲

✲

minimize E

In the above diagram, we show the conceptual framework. There are some “true” parameter
values xtrue which generate the data using the model defined by the forward probability
f (y|xtrue). The actual data set y0 we collected is a particular sample from this forward
probability. However, since the noise could have been different, other possible (hypothetical)
data sets are y1, y2, ..., as shown. From a data set, we have an algorithm for estimating
the parameters x̂ which may involve defining a merit function and minimizing this, just as
described above. Using this algorithm, we compute the estimate x̂0 from the actual data set
y0. Conceptually, however, we can also compute estimates x̂1, x̂2, ... from the hypothetical
data sets y1, y2, ... We now look at the width of the distributions of the estimates x̂0, x̂1,
x̂2, ... about xtrue in order to quantify the accuracy of the estimates.

Unfortunately, this strategy requires us to know the value of xtrue, which is of course unavail-
able. What we do instead is to first calculate x̂0 from the actual data set y0 and pretend that

this is the true value of x. We then construct “synthetic data sets” y
(s)
1 , y

(s)
2 , ... by drawing

from the forward probability function f (y|x̂0) . This requires us to have a reasonable idea of
the noise process. From each of the synthetic data sets, we carry out the estimation process

to find x̂
(s)
1 , x̂

(s)
2 , ... which we call Monte Carlo parameters. This process is shown in the

diagram.

122

Best fit
parameters x̂0

Synthetic

data set y
(s)
2

Synthetic

data set y
(s)
3

Synthetic

data set y
(s)
1

Synthetic

data set y
(s)
4

✟✟✟✟✟✟✯

❍❍❍❍❍❍❥

✡
✡
✡
✡
✡
✡
✡
✡✡✣

❏
❏
❏
❏
❏
❏
❏
❏❏❫

Monte Carlo

parameters x̂
(s)
1

Monte Carlo

parameters x̂
(s)
2

Monte Carlo

parameters x̂
(s)
3

Monte Carlo

parameters x̂
(s)
4

Actual
data set y0

✲

✲

✲

✲

✲

We then study the distribution of x̂
(s)
1 , x̂

(s)
2 , ... about x̂0 to tell us about the accuracy of

estimation process. When forming each Monte Carlo parameter estimate, we obtain a value
for the merit function at the minimum. By plotting a histogram of these minima, we can
see whether E (x̂0;y0) = min E (x;y0) is reasonable. This gives an indication of the model
adequacy. Note that we are making the (possibly big) assumption that the distribution

of x̂
(s)
k about x̂0 is not too different from the (inaccessible) distribution of x̂k about xtrue.

The Matlab program below illustrates how Monte Carlo simulation may be carried out for
the fitting problem

clear

load fitdata

Nmc = 100;

ymock = makeC(xnlbest,tlist) * xlinbest;

fid = fopen(’fitmc.dat’,’w’);

for k = 1:Nmc

% Make synthetic data

ysyn = ymock + sigma*randn(size(y));

xnlMC = fmins(’misfit’,xnlbest,0,[],tlist,ysyn);

xnlMC = sort(xnlMC);

C = makeC(xnlMC,tlist);

xlinMC = (C’*C)\(C’*ysyn);

EMC = misfit(xnlMC,tlist,ysyn);

fprintf(fid,’%f ’,xnlMC,xlinMC,EMC);

fprintf(fid,’\n’);

end

fclose(fid);

123

The results of the simulation are stored in the file fitmc.dat and are summarized in the
following table. Each row corresponds to a new synthetic data set, and the estimates of the
parameters and the minimum value of the merit function are tabulated for that data.

ω
(s)
1 ω

(s)
2 A

(s)
1 B

(s)
1 A

(s)
2 B

(s)
2 Emin

Data realization y
(s)
1 1.33 2.63 1.32 0.50 1.71 0.49 8.61

Data realization y
(s)
2 1.36 2.58 1.38 0.61 1.91 0.31 7.50

Data realization y
(s)
3 1.45 2.48 1.40 0.81 1.86 −0.22 14.66

...
...

...
...

...
...

...

Data realization y
(s)
100 1.40 2.60 1.25 0.93 1.70 0.61 12.14

Mean 1.38 2.57 1.27 0.71 1.71 0.29 8.73
Standard deviation 0.08 0.07 0.16 0.34 0.16 0.35 2.19

From this table, we can place error bars on the estimates found previously. We write

ω1 = 1.40 ± 0.08

ω2 = 2.57 ± 0.07

A1 = 1.2± 0.2

B1 = 0.7± 0.3

A2 = 1.7± 0.2

B2 = 0.3± 0.4

Since the means over the Monte Carlo runs lie within these error bars, we have no evidence
that the estimates are biassed. Notice that the minimum value of E obtained in the original
data fit is 7.4, which is well within the range of Emin obtained during the Monte Carlo
simulations. Note that the distribution of Emin is not Gaussian, in general, and so we would
usually not be too alarmed even if the value of Emin that we obtained in the original fit
is several standard deviations larger than the average in the Monte Carlo simulations. We
would become concerned about using an inadequate model only if the probability of getting
the value of Emin found in the original fit is less than about 10−3.

5.10.4 The Joint Gaussian Approximation

The above method of using Monte Carlo simulation of many data sets is very general and
allows us to consider non-linear models and non-Gaussian noise processes. However, the
need to produce many synthetic data sets can be quite time consuming. If the posterior
probability function can be approximated by a multivariate Gaussian, it is possible to obtain
error estimates on the parameters by using the technique described previously. Since we are
approximating the posterior probability by

N exp

(

−1

2
[E (x;y)− S (x)]

)

(5.156)

or the likelihood function by

N exp

(

−1

2
E (x;y)

)

(5.157)

124

the formal covariance matrix is Q−1 where

Qij=
∂2L

∂xi∂xj
, (5.158)

and L (x) is either E (x;y) − S (x) for the MAP estimator or is E (x;y) for the maximum
likelihood estimator. The formal variances of the individual parameters are found by taking
the diagonal elements of Q−1.

In order to assess the model adequacy, it can be shown that in the special case of additive
Gaussian noise of covariance Γ and a purely linear model ŷ (x) = Cx, for some N × M
matrix C, it can be shown if we define

E (x;y) = (y − ŷ (x))t Γ−1 (y − ŷ (x))

then for a given data set y, the distribution of

Emin ≡ min
x

E (x;y)

is χ2 with N −M degrees of freedom. By using tables of the χ2 distribution, one can judge
if the value of Emin obtained in the fit is reasonable.

These results are often used in practise even for non-linear fitting problems, although this
can be dangerous in pathological cases. In particular, the quantitative confidence levels for
Gaussian distributions will generally differ from those of the true posterior probability, even
though the shapes of the contours of equal posterior probability (which are assumed to be
ellipsoids) may be reasonable near the optimum parameter values.

125

6

Stochastic Simulation

6.1 Markov Chains

6.1.1 Introduction

Suppose that M = {Xn}∞n=0 , (or perhaps M = {Xn}∞n=−∞) is a sequence of correlated
random variables, where each Xn comes from some set Ω, .called the state space. We
assume that states in Ω can be labeled by the integers, i.e., Ω is discrete. The process is a
Markov chain if it satisfies the Markov condition

Pr (Xn+1 = j|Xn = i,Xn−1 = xn−1, ...,X0 = x0) = Pr (Xn+1 = j|Xn = i) . (6.1)

Fixing an initial distribution Pr (X0 = i) for X0 and the transition probability for Xn+1

given Xn, Pr (Xn+1 = j|Xn = i) determines a Markov chain.

If the transition probability does not depend on n, i.e., if

Pr (Xn+m+1 = j|Xn+m = i) = Pr (Xn+1 = j|Xn = i) for all m ∈ Z, (6.2)

we say that M is homogeneous and we write the transition probability as a matrix P where

Pij = Pr (Xn+1 = j|Xn = i) . (6.3)

Note that Pij denotes the conditional probability to enter state j on the next step, given that
the current state is i. The transition probabilities satisfy the normalization condition

∑

j∈Ω
Pij = 1 (6.4)

since the chain must be in some state on the next step. A matrix with rows which sum to
one is called stochastic.

Example 6.1 Suppose that Ω = {1, 2, 3}, the transition matrix is

P =

2
5

1
2

1
10

1
5

7
10

1
10

2
5

2
5

1
5

 ,

and that the initial distribution is Pr (X0 = i) =
(
1
3 ,

1
3 ,

1
3

)
. We may represent the transition

matrix of the Markov chain as a graph with a vertex for each state and a directed edge from
vertex i to vertex j when there is a nonzero transition probability Pij from i to j. Thus for
the Markov chain above, we would have the digraph (directed graph) shown in Figure 6.1.

127

i j
P

i j

1

0.4

0.1

0.4

0.4

0.5

0.7

0.1

0.2

0.2

2 3

Figure 6.1: Digraph corresponding to the transition matrix of Example 6.1.

Simulation Note that if a + b + c = 1 and we wish to pick a state in {1, 2, 3} with
probability a for 1, b for 2 and c for 3, we need only generate a random number p distributed
uniformly on [0, 1] and if p < a, pick 1, if a < p < a+ b, pick 2 and if a+ b < p < a+ b+ c = 1
pick c.

We will use this technique to simulate the chain in Example 6.1. The random numbers

u1 u2 u3 u4 u5 u6
0.429 0.156 0.146 0.951 0.921 0.644

have been sampled from a uniform distribution on [0, 1] . Our simulation proceeds as follows:

1. Pick X0 using the initializing distribution Pr (X0 = i) =
(
1
3 ,

1
3 ,

1
3

)
. Since we have a =

b = c = 1
3 and u1 = 0.429, we select X0 = 2.

2. We are now in state 2. We must choose a new state by jumping from state 2. Since
P2j =

(
1
5 ,

7
10 ,

1
10

)
, we have a = 1

5 , b = 7
10 and c = 1

10 . Since u2 = 0.156 < a, we select
X1 = 1.

3. We are now in state 1. Iterating, since P1j =
(
2
5 ,

1
2 ,

1
10

)
, we have a = 2

5 , b = 1
2 and

c = 1
10 . Since u3 = 0.146 < a, we select X2 = 1.

We thus obtain
X0 X1 X2 X3 X4 X5 . . .

2 1 1 3 3 2 . . .

which we call a a realization of the chain. By simulating the process we obtain a realization
of the process. We see from the simulation procedure that the stochastic process satisfies the
Markov condition: we only used the value of the last state Xn to calculate the distribution
forXn+1.

128

6.1.2 The Distribution of Xn

Consider Pr (Xn = j) , which is the probability that after a simulation of a Markov chain for
n steps, the state reached is Xn = j. These probabilities may be arranged in a row vector

π(n) where, by definition π
(n)
j = Pr (Xn = j) . When n = 1, we see that

Pr (X1 = j) =
∑

i∈Ω
Pr (X1 = j, X0 = i)

=
∑

i∈Ω
Pr (X1 = j|X0 = i) Pr (X0 = i) . (6.5)

This may be written in matrix form as

π
(1)
j =

∑

i∈Ω
π
(0)
i Pij or π(1) = π(0)P. (6.6)

Similarly,

π(n) = π(n−1)P. (6.7)

Suppose that for some π, we have that

π = πP (6.8)

i.e., π is a left eigenvector of P with eigenvalue 1, normalized such that
∑

πi = 1. Then π
is called a stationary distribution for P, since if π(n) = π, then π(n+1) = π(n)P = π also,
i.e., once the chain is in distribution π, it stays in that distribution.

Example 6.2 π =
(

5
18 ,

11
18 ,

1
9

)
is the stationary distribution for the matrix in the first example,

i.e.,

(
5
18

11
18

1
9

)
=
(

5
18

11
18

1
9

)

2
5

1
2

1
10

1
5

7
10

1
10

2
5

2
5

1
5

 (6.9)

Definition 6.1 Suppose that π(n) → π as n → ∞ for any π(0). Then π is the equilibrium
distribution of the chain M and the chain is said to be ergodic.

For an ergodic chain, and for sufficiently large n, the states of M are distributed like π and
the system is “in equilibrium”.

Exercise 6.1 Suppose that M is ergodic with equilibrium distribution π. Show that as
n → ∞,

Pn →

· · · π · · ·
· · · π · · ·

...
· · · π · · ·

. (6.10)

where Pn = PP . . .P matrix-multiplied n times.

Solution: By iterating π(n) = π(n−1)P we see that π(n) = π(0)Pn. If M is ergodic, then
π(n) → π for any π(0). In particular if we choose π(0) = (0, 0, ..., 1, ..., 0) where the 1 is in the
k’th location, π(0)Pn is equal to the k’th row of Pn and, by assumption, this tends to π as
n → ∞. Since this holds for every k, the matrix Pn has the form shown.

129

Exercise 6.2 Verify that

2
5

1
2

1
10

1
5

7
10

1
10

2
5

2
5

1
5

n

→ 1

18

5 11 2
5 11 2
5 11 2

as n → ∞ as follows from the examples above.

Exercise 6.3 Determine the stationary distribution if P =

(
1− a a
b 1− b

)

where 0 ≤
a, b ≤ 1.

Solution: If 0 < a+ b < 2, then π =
(
b/ (a+ b) a/ (a+ b)

)
is the stationary distribution.

If a = b = 0, then Ω = {0, 1} is reducible under P, i.e., depending upon the initial state,
π(n) →

(
1 0

)
or π(n) →

(
0 1

)
and π =c

(
0 1

)
+d
(
0 1

)
is a stationary distribution

for any c and d. On the other hand, if a = b = 1, the Markov chain is periodic.

6.1.3 Equilibrium Distributions

Under what circumstances does a stationary distribution exist ? If one exists, is it unique ?
Does π(n) → π for any initial π(0) ? We seek sufficient conditions for ergodicity.

Irreducibility

If we can find a sequence of states

i → k1 → k2 → · · · → kn → j (6.11)

such that the transition probabilities Pi,k1 6= 0, Pkm,km+1 6= 0, Pkn,j 6= 0, then there is a
sequence of states from i to j with a non-zero probability of occurring in M. We say that
“i and j communicate” and write i → j. If j and i also communicate, i.e., if j → i, we say
that i and j “intercommunicate” and write i ↔ j. Sets of intercommunicating states form
equivalence classes, since i ↔ m and m ↔ j ⇒ i ↔ j, and likewise i ↔ m but m 6↔ j ⇒
i 6↔ j.

If all states in Ω intercommunicate, then Ω is said to be irreducible under P, i.e., for any
two states i and j in Ω, there is a path with non-zero probability which links i to j and a
path with non-zero probability which links j to i. Otherwise, Ω is reducible under P.

If there is more than one distinct equivalence class of intercommunicating states in Ω, the
Markov chain is reducible under P and a stationary distribution need not be unique.

Example 6.3 Suppose that Ω = {1, 2, 3, 4} and that

P =

0.4 0.6 0 0
0.2 0.8 0 0
0 0 0.4 0.6
0 0 0.2 0.8

(6.12)

Then it is clear (from the associated digraph) that {1, 2} and {3, 4} are the equivalence classes
of intercommunicating states. There are two left eigenvectors of P with eigenvalue 1, namely
σ =

(
1
4

3
4 0 0

)
and ρ =

(
0 0 1

4
3
4

)
. If the initial state X0 ∈ {1, 2} , the stationary

distribution is σ and if X0 ∈ {3, 4} the stationary distribution is ρ.

130

Reversibility

If I give you a realization of a reversible Markov process, but don’t tell you in which direction
the chain was simulated, you will not be able to figure out the simulation direction by looking
at the sequence of states in the realization. This is a rare and special property.

Consider, for example, a more hum-drum chain on Ω = {1, 2, 3} with the transition matrix

P =

1
3

1
3

1
3

1 0 0
0 1 0

 . (6.13)

This defines an irreducible chain. We notice that the sequence 1 → 3 → 2 → 1 is possible
in this chain but the reverse sequence 1 → 2 → 3 → 1 is not possible since P23 = 0. Thus
there is a sequence of states for which it is possible to tell in which direction the simulation
occurred and the chain is not reversible.

Lemma 6.1.1 Let M = {Xn}∞n=−∞ be a homogeneous Markov chain with transition matrix
P. Then if we define the random variables Yn = X−n, the sequence M′= {Yn}∞n=−∞ is also a
Markov chain, called the reversed chain of M.

Proof: Consider the conditional probability Pr (Yn+1|Yn, Yn−1, ...) . We wish to show that
this is equal to Pr (Yn+1|Yn) . By definition of conditional probabilities, we see that

Pr (Yn+1|Yn, Yn−1, ...) =
Pr (Yn+1, Yn, Yn−1, ...)

Pr (Yn, Yn−1, ...)

=
Pr (Yn−1, Yn−2, ...|Yn+1, Yn) Pr (Yn+1, Yn)

Pr (Yn, Yn−1, ...)

=
Pr (X−n+1,X−n+2, ...|X−n−1,X−n) Pr (Yn+1, Yn)

Pr (Yn, Yn−1, ...)
(6.14)

Using the Markov property of M we have that

Pr (X−n+1,X−n+2, ...|X−n−1,X−n) = Pr (X−n+1,X−n+2, ...|X−n) , (6.15)

hence

Pr (Yn+1|Yn, Yn−1, ...) =
Pr (X−n+1,X−n+2, ...|X−n) Pr (Yn+1, Yn)

Pr (Yn, Yn−1, ...)

=
Pr (Yn−1, Yn−2, ...|Yn) Pr (Yn+1, Yn)

Pr (Yn, Yn−1, ...)

=
Pr (Yn+1, Yn)

Pr (Yn)
= Pr (Yn+1|Yn) . (6.16)

Thus M′ is also a Markov chain.

Definition 6.2 A homogeneous Markov chain M is reversible if the transition matrix for
the reversed chain M′ coincides with that for M, so that

Pr (Xn+1 = j|Xn = i) = Pr (Xn = j|Xn+1 = i)

If the transition matrices are the same, the value of any statistic we care to measure on a
realization will have the same distribution, whether the realization came from the forward or
reversed chain. That’s why we cant determine what the simulation direction was by looking
at the output.

131

Necessary and sufficient conditions for reversibility

Theorem 6.1 Suppose that M = {Xn}∞n=−∞ is a Markov chain with transition matrix P,
unique stationary distribution π, and that for all n, Xn is distributed as π. M is reversible
iff

πiPij = πjPji for all i, j ∈ Ω. (6.17)

This is often called the detailed balance condition.

Proof: Let Q =(Qij) be the transition matrix of the reversed chain M′ = {Yn}∞n=−∞ where
Yn = X−n, i.e.,

Qij = Pr (Yn+1 = j|Yn = i) . (6.18)

We must prove that Qij = Pij iff detailed balance holds. By definition of the process Y,

Qij = Pr (X−n−1 = j|X−n = i)

=
Pr (X−n−1 = j,X−n = i)

Pr (X−n = i)

=
Pr (X−n = i|X−n−1 = j) Pr (X−n−1 = j)

Pr (X−n = i)
(6.19)

which is essentially a statement of Bayes’ theorem. Since each Xn is distributed as π for all
n,

Qij =
Pr (X−n = i|X−n−1 = j) πj

πi

=
Pjiπj
πi

, (6.20)

by definition of the transition matrix P of M. Then Qij = Pij and the chain is reversible if
and only if detailed balance holds.

Example 6.4 Ehrenfest model of Diffusion

Given the microscopic dynamics of a reversible physical process, this example shows how the
stationary distribution may be found by using the detailed balance condition.

Consider two boxes A and B connected to each other. Within the two boxes are m particles.
At time t ∈ Z, let Xt represent the number of particles in box A, so that there are m−Xt

particles in box B. Select one of the m particles at random and transfer it to the other box
(whichever that is). This leads to the situation at time t+ 1.

We shall verify that M = {Xt}∞t=0 is a homogeneous Markov chain. Its transition matrix
P satisfies Pij = 0 unless j = i − 1 or j = i + 1. Now, Pi,i−1 is the probability that
Xt+1 = Xt − 1 = i − 1 or the probability that the randomly selected particle is in box A
which is i/m. Similarly, Pi,i+1 = (m− i) /m.

Any given sequence of moves is equally likely to occur forward or in reverse (imagine putting
a label on each ball), so the process is reversible. Thus the stationary distribution π must
satisfy the detailed balance condition. Setting j = i+ 1 in the condition,

πiPi,i+1 = πi+1Pi+1,i (6.21)

132

or

πi

(
m− i

m

)

= πi+1

(
i+ 1

m

)

πi+1 =

(
m− i

i+ 1

)

πi (6.22)

Using this relationship, we see that

π1 = mπ0, π2 =
m− 1

2
π1, π3 =

m− 2

3
π2, ... (6.23)

so that

πi =
m (m− 1) · · · (m− i+ 1)

i!
π0 =

(
m

i

)

π0. (6.24)

We can find all πi by the normalization condition since

1 =

m∑

i=0

πi =

m∑

i=0

(
m

i

)

π0 = 2mπ0. (6.25)

Hence the desired stationary distribution is

πi = 2−m

(
m

i

)

, (6.26)

which is a binomial distribution B
(
m, 12

)
.

Periodic chains (a technical detail)

If the transition matrix P of a Markov chain has a zero diagonal, i.e., if Pii = 0 for all i, the
chain may be periodic. Let M be an irreducible Markov chain with transition matrix P
and let i be a fixed state. Define the set

T =
{

k :
(

Pk
)

ii
> 0, k > 0

}

. (6.27)

These are the steps on which it is possible for a chain which starts in state i to revisit i. The
greatest common divisor of the integers in T is called the period of the state i.

It is possible to show that the period of an irreducible chain for the state i is a constant
independent of i. The chain is said to be periodic if the period of any of its states is greater
than one.

Example 6.5 Consider the chain defined by the state space Ω = {1, 2, 3, 4} , the transition
matrix

P =

0 1
2 0 1

2
1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0

, (6.28)

and the initial state X0 = 1.

This is periodic with d = 2 since

Pr (Xn = 2|X0 = 1) =

{
0 if n is even
1
2 if n is odd

(6.29)

Periodic chains are not ergodic, though the difficulty can be eliminated by sub-sampling.

133

Ergodicity theorem for reversible chains

Theorem 6.2 For an irreducible, aperiodic Markov chain M on a countable state space with
transition matrix P, if there exists π =(πi) such that 0 ≤ πi ≤ 1,

∑

i πi = 1 and

πiPij = πjPji, (6.30)

then M is reversible and ergodic with unique equilibrium distribution π.

Notice that if we sum the detailed balance condition with respect to j, we obtain

πi

∑

j

Pij

 =
∑

j

πjPji (6.31)

or

πi =
∑

j

πjPji (6.32)

which shows that π is a stationary distribution. In general, given a stochastic process with
transition matrix P, it is very difficult to find the equilibrium distribution π unless the chain
is reversible. We have also assumed that Ω is countable and that M is homogeneous.

Exercise 6.4 Suppose M is an irreducible Markov chain on a finite space of N states, with
Pji = Pij , ie the transition matrix is symmetric. Prove M is reversible, and that the uniform
distribution πi = 1/N is its unique equilibrium distribution.

Solution: See Example 6.6 in the next section.

Reading

G.R. Grimmet and D.R. Stirzaker, Probability and Random Processes.

6.2 Markov Chain Monte Carlo

6.2.1 Some special cases

In the previous section, we considered the problem of finding the equilibrium distribution π
of a chain with a given transition matrix P. In this section, we consider the reverse problem.
Given a distribution π, how do we construct the transition matrix P of a Markov chain so
that the equilibrium distribution of this Markov chain is π?

AMarkov chain can be specified by a transition matrix, or by giving the microscopic dynamics
(ie, an algorithm which determines Xn+1 given Xn). The algorithm implicitly fixes the
transition matrix. Real problems are usually too complex for a transition matrix to be given
explicitly. So the problem of specifying a MC with a given desired equilibrium distribution
will boil down to the problem of providing an algorithm which we can prove generates a MC
with the right equilibrium distribution. We use the idea of reversibility.

Example 6.6 Construct an ergodic, reversible Markov chain M on the state space Ω =
{1, 2, 3, 4} with equilibrium distribution πi =

1
4 , (i.e., uniform on Ω.)

134

Since M is to be reversible, the transition matrix must satisfy

πiPij = πjPji. (6.33)

In order for πi = πj, we have Pij = Pji. If Ω is irreducible under P (i.e., the chain can get to
any state in Ω) then we have satisfied the conditions of the ergodicity theorem for reversible
chains. So any symmetric, irreducible transition matrix P will do the job.

If for example,

P =

3/4 1/4 0 0
1/4 1/2 1/4 0
0 1/4 1/2 1/4
0 0 1/4 3/4

(6.34)

we satisfy
∑

j Pij = 1 and Pij = Pji. Now π =
(
1/4 1/4 1/4 1/4

)
is a left eigenvector

of P. All the conditions for ergodicity are satisfied so we expect that π(n) = π(0)Pn tends to
(
1/4 1/4 1/4 1/4

)
as n → ∞ from any start. Explicitly, we find that

P2 =

. 625 . 3125 .0 625 0
. 3125 . 375 . 25 .0 625
.0 625 . 25 . 375 . 3125
0 .0 625 . 3125 . 625

, (6.35)

P4 =

. 49219 . 32813 . 14063 .03 906

. 32813 . 30469 . 22656 . 14063

. 14063 . 22656 . 30469 . 32813

.03 906 . 14063 . 32813 . 49219

, (6.36)

P100 =

. 25000 00567 . 25000 00235 . 24999 99765 . 24999 99433

. 25000 00235 . 25000 00097 . 24999 99903 . 24999 99765

. 24999 99765 . 24999 99903 . 25000 00097 . 25000 00235

. 24999 99433 . 24999 99765 . 25000 00235 . 25000 00567

. (6.37)

Note that this problem is trivial as we could have simply taken Pij = 1/4 for all i, j in Ω. At
each update, we sample uniformly on Ω. Then π(n) = π for all n.

Exercise 6.5 Consider the state space Ω = {(a, b, c) : a+ b+ c = 0 and a, b, c ∈ {−9,−8, ..., 8, 9}}.
Construct a reversible Markov chain with an equilibrium distribution which is uniform on Ω.

Solution: In order to move from state Xn = i to state Xn+1 = j where i and j are in Ω, pick
a vector u with elements (0, 1,−1) in random order, and set j = i + u. This move respects
the constraint that a + b + c = 0. If i + u is not in Ω, the move is not made and we set
Xn+1 = Xn = i. There are six choices for u. We notice that

1. For each pair of states i and j, there is either one or no vector u of the above form
which relates them. If j = i+ u, then i = j + (−u). Since the probability to pick u is
the same as the probability to pick −u, we see that Pij = Pji =

1
6 if there is a u such

that i = j + u. Also, Pij = Pji = 0 if no such u exists.

2. The rule that we do not make moves taking us outside Ω only affects the probability
Pii for some i and does not spoil the symmetry of the transition matrix P.

135

Since P is symmetric, it is clear that a uniform distribution π on Ω will satisfy πiPij = πjPji.
The chain is clearly irreducible as for any pair of states i and j in Ω, there is a sequence of
valid vectors u which can take us from i to j. By the ergodicity theorem for reversible chains,

Pr (Xn = i) → 1

|Ω| , i.e., uniform on Ω (6.38)

for any initial distribution. Note that |Ω| denotes the number of states in Ω.

6.2.2 Metropolis-Hastings Markov Chain Monte Carlo

We seem to be able to handle requests for samples from a uniform distribution. How about
generating non-uniform distributions ? Metropolis-Hastings Markov Chain Monte Carlo is a
certain type of algorithm which generates a MC with equilibrium distribution π. The user
gets to say what kind of pie they want. The algorithm is as follows:

Let Xn = i. Xn+1 is determined in the following way.

1. Generation step: Generate a candidate state j from i with some distribution g (j|i) .
g (j|i) is a fixed distribution that we are free to choose, so long that it satisfies the
conditions

a) g (j|i) = 0 ⇒ g (i|j) = 0, (cant go forward implies cant go back)

b) g (j|i) is the transition matrix of an irreducible Markov chain on Ω.

2. Acceptance step: With probability

α (j|i) ≡ min

{

1,
πj
πi

g (i|j)
g (j|i)

}

, (6.39)

set Xn+1 = j (i.e., “accept” j), otherwise set Xn = i (i.e., “reject” j).

Note that since the generation and acceptance steps are independent, the transition proba-
bility to go from i to j is

Pr (Xn+1 = j|Xn = i) = g (j|i)α (j|i) provided that i 6= j. (6.40)

This says that the probability to land in state j from the current state i is equal to the
probability to generate j from the current state i times the probability that the new state j
is accepted. The probability Pii can be found from the requirement that

∑

j Pij = 1.

Assertion: (Metropolis et al. 1953, Hastings 1970)

Let π be a given probability distribution. The Markov chain simulated by the Metropolis-
Hastings algorithm is reversible with respect to π. If it is also irreducible and aperiodic, then
it defines an ergodic Markov chain with unique equilibrium distribution π.

Proof: We have to show that the transition matrix P determined by the MH algorithm
satisfies

πiPij = πjPji (6.41)

for all i 6= j (since the case for i = j is trivial). If this is the case, then the chain is reversible
and the rest of the assertion follows from the ergodicity theorem of the first section.

136

Assume without loss of generality that

πjg (i|j) > πig (j|i) . (6.42)

Since

Pij = g (j|i)α (j|i)

= g (j|i) min

{

1,
πj
πi

g (i|j)
g (j|i)

}

= g (j|i) , (6.43)

by assumption. On the other hand

Pji = g (i|j)α (i|j)

= g (i|j)min

{

1,
πi
πj

g (j|i)
g (i|j)

}

= g (i|j) πi
πj

g (j|i)
g (i|j)

=
πi
πj

g (j|i) (6.44)

again by assumption. From these expressions, it is clear that πiPij = πjPji as required.

Note that if g (j|i) is not irreducible, then Pij is not irreducible. However, irreducibility of
g (j|i) is not sufficient to guarantee irreducibility of Pij since it may be that α (j|i) = 0 (if
πj = 0), and this may prevent the chain from reaching all states in Ω.

Example 6.7 Use the Metropolis-Hastings method to construct a reversible, ergodic Markov
chain on Ω = {1, 2, 3} with equilibrium distribution π =

(
5
18 ,

11
18 ,

2
18

)
.

Solution: Let us suppose that gij ≡ g (j|i) = 1
3 for all i and j, i.e., the generation step picks

a candidate state uniformly from Ω. By the definition of αij ≡ α (j|i) , we see that

αij = min

{

1,
πj
πi

}

=

1 1 2/5
5/11 1 2/11
1 1 1

 . (6.45)

Since Pij = gijαij for i 6= j and Pii = 1−∑j 6=i Pij , gives the diagonal entries, we calculate

P =

8/15 1/3 2/15
5/33 26/33 2/33
1/3 1/3 1/3

 .

It is easy to check that πP = π and that the rows of Pn tend to π as n becomes large.

Example 6.8 Construct the transition matrixP of a Markov chain with state space {0, 1, 2, ...}
and equilibrium distribution

πi =
µi exp (−µ)

i!
, (6.46)

i.e., a Poisson distribution with mean µ ∈ R
+.

As usual, there are two parts, an update scheme to generate candidate states and a scheme
to accept or reject these states.

Let Xn = i. Xn+1 is determined in the following way.

137

1. Generation: Any simple scheme will do, e.g.,

g (j|i) =

1/2 if j = i+ 1
1/2 if j = i− 1
0 otherwise

(6.47)

i.e., given Xn = i, the candidate state for Xn+1 is chosen uniformly from {i+ 1, i − 1} .

2. Accept / reject: The acceptance probability is determined by the Metropolis-Hastings
formula

α (j|i) = min

{

1,
πj
πi

g (i|j)
g (j|i)

}

. (6.48)

Now g (i|j) = g (j|i) = 1/2 so

α (i+ 1|i) = min

{

1,
πi+1

πi

}

= min

{

1,
µ

i+ 1

}

, (6.49)

and

α (i− 1|i) = min

{

1,
πi−1

πi

}

= min

{

1,
i

µ

}

. (6.50)

Note that if Xn = 0 and the candidate state j = −1 is chosen, we reject it and set
Xn+1 = 0. This affects Pii when i = 0 but leaves Pij correct for detailed balance to
hold.

Exercise 6.6 Implement the algorithm for the above example in you favorite computer
language. Using µ = 1, check the mean and variance of the samples X0 . . . Xn are close to µ
when n is large.

Example 6.9 The Binary Markov Random Field

Consider the space Ω = {(x1, x2, ..., xN2) : xm ∈ {−1, 1}} . We may regard xm as the colour
of the m’th pixel where xm = −1 denotes a black pixel and xm = 1 denotes a white pixel.
Then Ω is the space of all black and white images (Figure 6.2) with N2 pixels. Suppose that

1x x2 N 2xx=(, ,...)

x =1 x =-1i i

Figure 6.2: The Ising model on a square lattice with free boundaries.

138

the probability of x ∈ Ω is given by

Pr (x) =
1

Z ′ exp

J
∑

〈m,n〉
xmxn

 (6.51)

=
1

Z exp (−2J#x) (6.52)

for some J > 0 and where 〈m,n〉 indicates a sum over pixels m and n which are adjacent on
the image lattice, and #x is the number of edges connecting pixels of unequal value. The
constant Z normalizes the probability distribution.

Exercise 6.7 Show that
∑

〈m,n〉 xmxn = −2#x+2N2 − 2N . What happened to exp(2N2 −
2N) ?

The probability distribution above favours smooth images. We wish to generate samples
X ∼ Pr (X = x) from this distribution. Each sample X is an array of N2 binary values
x = (x1, x2, ..., xN2) . The normalising constant Z is not in general available (though see L.
Onsager, Phys Rev, vol65, pp117, 1944) and classical sampling methods will not work. The
distribution (6.51) is called a binary Markov random field, or “Ising” model.

Exercise 6.8 Construct a reversible Markov chain on Ω with equilibrium distribution πx =
Pr (x) .

Solution: We use the Metropolis Hastings prescription:

Let Xn = x. Xn+1 is determined in the following way.

1. Generate a candidate state x′ from x using some process we can choose. Here is a
simple method: given x = (x1, x2, ..., xN2) , pick a pixel n at random from 1, 2, ..., N2.
Set x′ = (x1, x2, ...,−xn, ..., xN2) . Notice that

a) we can get to any state in Ω by a sequence of such updates,

b) if x′ and x differ by more than one pixel, g (x′|x) = g (x|x′) = 0,

c) if x′ and x differ by exactly one pixel, g (x′|x) = g (x|x′) = 1/N2,

so our generation scheme is suitable for MH MCMC.

2. Work out the Metropolis-Hastings acceptance probability with πx = Pr (x) .

α
(
x′|x

)
= min

{

1,
πx′

πx

g (x|x′)
g (x′|x)

}

= min
{
1, exp

(
−2J(#x′ −#x)

)}
(6.53)

Notice that both the g’s and the normalization Z cancel. Since x and x′ are the same
except at xn where x′n = −xn,, we write #x′ − #x = #x′n − #xn where #xn is the
number of disagreeing neighbours around xn. So we set Xn+1 = x′ with probability

α
(
x′|x

)
= min {1, exp (−2J#∆n)} (6.54)

(where #∆n = #x′n − #xn is the change in the number of disagreeing neighbours at
pixel n). Otherwise we set Xn+1 = x, ie no change.

139

Notice that

1. If #∆n < 0, i.e., the change from x to x′ gives a smoother image with fewer disagreeing
neighbours, then α = 1 and the proposed change is accepted with probability 1.

2. If #∆n > 0, the change leads to a more irregular image with fewer agreeing neighbours.
Then α = exp (−2J#∆n) and the proposed change is accepted with probability < 1.

Algorithm for generating a realization of the Markov chain

A Matlab script file for generating realizations from a random binary Markov field is

Xpix = 64;

Ypix = 64;

J = 1;

l = 0;

F = -ones(Ypix,Xpix);

while 1,

for k = 1:4096

% Select a pixel at random

ix = ceil(Xpix*rand(1)); iy = ceil(Ypix*rand(1));

Fc = F(iy,ix); pos = (ix-1)*Ypix + iy; % Index of pixel

nbhrs = pos + [-1 1 -Ypix Ypix]; % Find indicies of neighbours

nbhrs(find([iy==1 iy==Ypix ix==1 ix==Xpix])) = []; % Remove those outside picture

nagree = sum(Fc==F(nbhrs)); ndisagree = sum(Fc~=F(nbhrs));

change = nagree - ndisagree;

if rand(1)<exp(-2*J*change) % if change<0, this happens with certainty

F(iy,ix) = -Fc;

end

l = l + 1;

end

figure(1); image(63*F);colormap(gray); title([’Iteration ’ num2str(l)]);

drawnow

end

The only non-straightforward part is handling pixels on the edges which have fewer than four
neighbours. If you run it you will see images sampled from Pr(x). Increasing the value J
leads to images dominated by one color, as the average number of disagreeing edges decreases
with increasing J . Some examples are given in Figure 6.3.

140

B CA

Figure 6.3: Samples x ∼ exp(−2J#x)/Z with N = 64 and (A) J = 0.45 (B) J = 0.4 (C)
J = 0.35.

141

7

Sampled solutions to Inverse Problems

7.1 Introduction

The end result of modeling in the Bayesian formalism is a posterior distribution Pr (f |d) where
d is a vector of data and f is a vector of parameter values of interest which is transformed by
the physical process into the data. Observation of the data d involve a loss of information, as
the transformation of f into d (the forward problem) may have random components (“noise”)
as well as a possible reduction of dimension. We assume that the physical process leading
from f to d is understood, at least in a probabilistic sense, so that the forward probability
function Pr (d|f) may be calculated. In the Bayesian formalism, the forward probability
function is regarded as a function of f , and enters Bayes’ theorem as the likelihood function.
We then have

Pr (f |d) ∝ Pr (d|f) Pr (f) (7.1)

up to a normalizing constant independent of f .

In many cases of interest, the full posterior probability distribution is hopelessly analytically
intractable, since the number of components in f may be very large and the prior probability
function Pr (f) may involve information which is difficult to express in analytic terms (e.g.
in an image reconstruction problem, the true object f may be known to consist of a single
“blob” of material so that its boundary is simply connected). How then do we get at f? What
are the most likely values for f given the data, and what are typical or “average” values?
Our problem may be treated by simulation: it is enough that we can test the plausibility of
any particular guess at f by simulating the physical process leading from f to d. We draw
samples from the set Ω of all possible f ’s, each sample drawn with probability Pr (f |d) . In
this way we get a set Θ = {f1, f2, ..., fN} of samples distributed like the posterior distribution.
Inference on Pr (f |d) becomes inference on {fi}Ni=1 . For example, the mode and mean of the
samples in Θ give us an estimate of the most likely and average values of f . Given some set
of parameters A, we can estimate Pr (f ∈ A|d) by calculating the fraction of samples which
lie in the set A. Sampling-based methods are called Monte-Carlo methods.

Again, however, standard sampling techniques are useless when the posterior involves many
variables and is otherwise intractable. In particular, one generally needs to have a closed
form for the constant which normalizes the probability distribution we want to sample. (The
exception to this, rejection sam1pling, is restricted in other respects). Markov chain sampling
methods enable us to sample the kinds of complex distributions that “natural” models of
physical processes tend to generate. In the previous chapter, we have considered Markov
chains on discrete state spaces. In this chapter we shall also extend the MCMC method to
continuous and mixed state spaces, allowing the solution of parameter estimation problems.

143

7.2 Recovering a binary matrix from noisy data

We first consider an example involving a finite (but large) state space based on the binary
Markov random field described in the previous chapter. Consider the problem of reconstruct-
ing a binary image (i.e., one in which each pixel is either black or white) from observations
of the image which are corrupted by independent zero-mean Gaussian noise. Let the image
f be of size M ×N pixels, and denote the value of the (m,n)’th pixel by fmn ∈ {−1, 1} . The
state space of all images Ω thus has 2MN elements. The observed data d = {dmn} are related
to f via

dmn = fmn + εmn

where each εmn is an independent sample of zero-mean Gaussian noise of variance σ2. Note
that although each fmn is black (−1) or white (+1) , the values of dmn can take on any real
value. Figure 7.1 shows an example of the true image f and a data set d obtained for σ = 2

Figure 7.1: A binary image f and a noise-corrupted data set d obtained by adding samples
of independent zero mean Gaussian noise of standard deviation σ = 2 to the image.

The likelihood function for this problem is given by

Pr (d|f) ∝ exp

[

− 1

2σ2

∑

m,n

(dmn − fmn)
2

]

.

In order to find the posterior probability function, a prior probability distribution Pr (f) is
required. This encodes our state of knowledge about which images are (à priori, without any
data) more likely to occur. For example, we might

1. have no prior prejudice whatsoever, i.e., Pr (f) = 2−MN , which is uniform on Ω.

2. favour smooth images: since the material is likely to be in lumps, we regard reconstruc-
tions in which the 1’s and -1’s separate out in blobs as a priori more probable. In
this case, the binary Markov random field of the last section might make a reasonable
choice:

Pr (f) =
1

Z exp (−2J#f) , (7.2)

144

where J is our lumping parameter. When J = 0, there is no smoothing, whereas if J is
large, we favour a uniform image of a single colour. A model which favours “simple”
reconstructions is called parsimonious.

7.2.1 Uniform Prior

If we use the uniform prior, the posterior probability is equal to the likelihood. An imple-
mentation of the Metropolis-Hastings Markov Chain Monte Carlo (MH MCMC) algorithm
which draws samples from the posterior probability involves the following steps:

1. Let Xn = f denote the current state of the Markov chain. A pixel with coordinates kl
is selected at random and the colour of the pixel is flipped, producing a candidate state
f ′ where

f ′
ij =

{
−fkl if i = k and j = l
fij otherwise

(7.3)

The generation probability g (f ′|f) is zero if f ′ and f differ by more than one pixel, and
is equal to 1/ (MN) if they differ by exactly one pixel.

2. Calculate the acceptance probability α (f ′|f) using

α
(
f ′|f
)
= min

{

1,
Pr (f ′|d)
Pr (f |d)

g
(
f |f ′
)

g (f ′|f)

}

(7.4)

If f ′ is generated as described above, the ratio g (f ′|f) /g
(
f |f ′
)

= 1. The ratio of
posterior probabilities is

Pr (f ′|d)
Pr (f |d) =

Pr
(
d|f ′

)

Pr (d|f)
Pr (f ′)
Pr (f)

(7.5)

which for a uniform prior reduces to the likelihood ratio Pr
(
d|f ′

)
/Pr (d|f) .

When using the MH MCMC algorithm, calculating the ratio of posterior probabil-
ities occurs on every step, and so should be done as efficiently as possible. For additive
Gaussian noise,

Pr
(
d|f ′

)

Pr (d|f) = exp

− 1

2σ2

∑

i,j

{(
dij − f ′

ij

)2 − (dij − fij)
2
}

 . (7.6)

We can compute this much more efficiently by using the fact that the only term in the
sum which changes when f is replaced by f ′ is that which involves the single pixel with
indices k, l. Hence

Pr
(
d|f ′

)

Pr (d|f) = exp

[

− 1

2σ2

{(
dkl − f ′

kl

)2 − (dij − fkl)
2
}]

= exp

[

− 1

2σ2

{
−2dkl

(
f ′
kl − fkl

)
+
(
f ′2
kl − f2

kl

)}
]

(7.7)
Finally, using the fact that f ′

kl = −fkl, we find

Pr
(
d|f ′

)

Pr (d|f) = exp

[
dkl (f

′
kl − fkl)

σ2

]

, (7.8)

which can be computed very quickly.

145

3. Accept the candidate state f ′ with probability α (f ′|f) . If the state is accepted, set
Xn+1 = f ′, otherwise set Xn+1 = f .

A Matlab implementation of the algorithm is given below, and the result of the reconstruction
is shown in Figure 7.2.

F = imread(’blob1.bmp’);

[M,N] = size(F);

sigma = 2;

d = double(F); d(find(d==0))=-1;

d = d + sigma*randn(size(d));

figure(1);

subplot(1,2,1);imagesc(F);set(gca,’Visible’,’off’);colormap gray; axis square;

subplot(1,2,2);imagesc(d);set(gca,’Visible’,’off’);colormap gray; axis square;

drawnow

J = 0.5;

f = ones(M,N);

figure(3);

subplot(1,2,1); hf=imagesc(f);set(gca,’Visible’,’off’);

colormap gray; axis square; drawnow;

mf = zeros(M,N);

subplot(1,2,2); hm=imagesc(mf);set(gca,’Visible’,’off’);

colormap gray; axis square; drawnow;

SS = 10000;

misfit = [];

adj = [-1 1 0 0; 0 0 -1 1];

iter = 0;

while 1

ix = ceil(N*rand(1)); iy = ceil(M*rand(1));

pos = iy + M*(ix-1); fp = -f(pos);

LkdRat = exp(d(pos)*(fp - f(pos))/sigma.^2);

alpha = LkdRat;

if rand<alpha % Prob of acceptance = min(1,alpha)

f(pos) = fp;

end

iter = iter + 1;

if rem(iter,SS) == 0,

mf = mf+f; NS = iter/SS; iter

set(hf,’CData’,f);

set(hm,’CData’,mf); drawnow

if iter/SS > length(misfit)

misfit = [misfit,zeros(100,1)];

misfit(iter/SS) = sum(sum((d-f).^2))/sigma;

end

end

end

146

Figure 7.2: Left hand figure shows a single sample from the MH MCMC algorithm, using a
uniform prior and right hand figure shows the mean of 600 sweeps, each consisting of 10000
iterations of the algorithm.

From the reconstruction, it is clear that the uniform prior does not significantly reduce the
noise, since the noise amplitude is so large that there is a significant probability that a
given measured value arose from either a +1 or −1. For a uniform prior, the state of each
pixel is independent of every other, so no inter-pixel correlations are used to improve the
reconstruction.

7.2.2 Markov Radom Field with Ising Prior

As discussed in the previous chapter, an Ising prior on the space of binary images is one of
the form

Pr (f) =
1

ZJ
exp (−2J#f) (7.9)

where #f is the number of edges linking disagreeing pixels in f , J > 0 is a constant and ZJ

is the normalization constant. In the MH MCMC algorithm, when comparing the current
state f with a candidate state f ′ which differs from f by a single pixel, the ratio of posterior
probabilities is given by

Pr (f ′|d)
Pr (f |d) =

Pr
(
d|f ′

)

Pr (d|f)
Pr (f ′)
Pr (f)

= exp

[
dkl (f

′
kl − fkl)

σ2

]

exp
[
2J
(
#f −#f ′

)]
. (7.10)

Notice how the normalization constant ZJ (which is difficult to evaluate) has cancelled in this
ratio. The quantity #f −#f ′ is easy to evaluate for a single-pixel change as it only involves
examining at most four edges which link the pixel to its neighbours.

The Matlab code for this problem is essentially the same as for the uniform prior, except that
the calculation of the acceptance probability is modified to the following:

LkdRat = exp(d(pos)*(fp - f(pos))/sigma.^2);

147

nbrs = pos + [-1,1,-M,M]; nbrs(find([iy==1,iy==M,ix==1,ix==N])) = [];

disagreef = sum(f(nbrs)~=f(pos)); disagreefp = sum(f(nbrs)~=fp);

DelLogPr = 2*J*(disagreef - disagreefp);

alpha = exp(DelLogPr)*LkdRat;

if rand<alpha

f(pos) = fp;

end

Figure 7.3: Left hand figure shows a single sample from the MH MCMC algorithm, using a
Ising prior with J = 0.5 and right hand figure shows the mean of 600 sweeps, each consisting
of 10000 iterations of the algorithm.

From the reconstruction shown in Figure 7.3, the clumping encouraged by the Ising prior is
apparent. This example illustrates the power of using prior information to help constrain the
reconstruction in image processing.

7.3 Recovering a binary matrix from its row and column
sums

In this section we consider an artificial problem: the estimation of a matrix (or “image”) of
zeros and ones from its row and column sums, as observed in the presence of noise.

An archaeologist is able to X-ray a square pillar from two sides only. We are
given a single slice of this data - two 64-pixel long sequences of noisy intensity
readings representing projections onto two orthogonal axes parallel to the sides of
the pillar, at a fixed height up the pillar. Suppose that the intensity of the rays
falls off from its initial value in proportion to the total amount of mass in the path
of the x-rays incident a given pixel. The pillar is expected to be composed of two
types of material of known density. The materials are expected to be separated
out in lumps of unknown position.

148

The problem might be recast: give a Bayesian formulation for the problem of reconstructing
an N × N matrix f = [fmn] given that fmn ∈ {−1, 1} and given the row and column sums
of f . Each row and each column sum is an independent measurement, with an uncertainty
which is assumed to be Gaussian, mean zero, and standard deviation σ.

Let the data be d = (r, c) where r and c are N -component vectors. In terms of f ,

rm =

N∑

n=1

fmn + ǫrm, (7.11)

cn =

N∑

m=1

fmn + ǫcn. (7.12)

where ǫrm and ǫcn are normally distributed r.v. mean zero and standard deviation σ, i.e.,

ǫrm ∼ 1√
2πσ2

e−(ǫrm)2/2σ2
ǫcn ∼ 1√

2πσ2
e−(ǫcn)

2/2σ2
, for m,n = 1 . . . N

Given an image f , let [f]m denote the sum over the m’th row of f and let [f]n denote the sum
over the n’th column of f . The posterior probability is given by

Pr (f |d) ∝ Pr (d|f) Pr (f) (7.13)

The likelihood function is given by

Pr(d|f) =
N∏

m=1

Pr(observe rm|[f]m)

N∏

n=1

Pr(observe cn|[f]n) (7.14)

∝ exp

(

− 1

2σ2

N∑

m=1

(rm − [f]m)2 − 1

2σ2

N∑

n=1

(cn − [f]n)2

)

. (7.15)

If we use an Ising prior for f , the posterior probability is

Pr (f |d) = 1

ZJ,σ
exp

(

−2J#f − 1

2σ2

N∑

m=1

(rm − [f]m)2 − 1

2σ2

N∑

n=1

(cn − [f]n)2

)

(7.16)

where Z−1
J,σ is again an unknown, intractable normalizing constant. We can sample from this

posterior probability function using Markov chain Monte Carlo and the Metropolis-Hastings
update rule as before. We aim to produce a Markov chain with equilibrium distribution
πf = Pr (f |d) , f ∈ Ω. We can use much the same algorithm as above:

Let Xn = f . Xn+1 is determined in the following way:

1. Given f = (f1,1, f1,2, . . . , fN,N), pick one of the N2 pixels (m,n) at random.
Set f ′ = (f1,1, f1,2, . . . ,−fm,n, . . . , fN,N) . Our generation scheme is suitable for MH
MCMC.

2. With probability

α
(
f ′|f
)
= min

{

1,
Pr(f ′|d)g(f |f ′)
Pr(f |d)g(f ′|f)

}

= min

{

1, exp

(

−2J (#f ′ −#f)− 1
2σ2

∑N
m=1

[
(rm − [f ′]m)2 − (rm − [f]m)2

]

− 1
2σ2

∑N
n=1

[
(cn − [f ′]n)2 − (cn − [f]n)2

]

)}

= min

{

1, exp

(

−2J
(
#f ′ −#f

)
− 2fm,n

σ2
(rm + cn − [f]m − [f]n + 2fm,n)

)}

149

set Xn+1 = f ′. Otherwise we set Xn+1 = f .

The above algorithm was implemented in C. The row and column sums of a matrix of side
64 were observed under i.i.d. Gaussian noise, mean zero, standard deviation 2.5. A sequence
of states from MCMC sampling of the posterior for prior parameter J = 0.5 are shown in
Figure 7.4.

10 sweeps

Original matrix

1000 sweeps

1 sweep 100 sweeps

initialisation

Figure 7.4: Sample from posterior for matrix reconstruction problem. 1 sweep = 4096 MC
steps.

7.3.1 References

1. D. Geman and S. Geman (1984) “Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6, 721–741.

2. D.M. Grieg, B.T. Porteous and A.H. Seheult (1989) “Exact maximum à posteriori
estimation for binary images”, J. Royal Stat Soc B, 51, 271–279.

7.4 Markov Chain Monte Carlo on Continuous State Spaces

Up to here, Ω has been discrete. Irreducibility is hard to define for continuous state spaces.
We shall regard the continuous case as approximated by a distribution on a discrete space.

Problem: How to construct a Markov chain {Xn}∞n=0 given an equilibrium probability den-
sity q (x)?

Definition: The kernel of a Markov chain on a continuous space Ω, corresponding to the
transition matrix Pij of the discrete chain is the density p (x′|x) where

p
(
x′|x

)
dx′ = Pr

(
x′ ≤ Xn+1 < x′ + dx′|Xn = x

)
, (7.17)

i.e., given that we are in state Xn = x at update n, p (x′|x) dx′ gives the probability to land
in the interval [x′, x′ + dx′) at the next update.

For correct normalization, we have

∫

Ω
p
(
x′|x

)
dx′ = 1 (7.18)

150

since Xn+1 must take some value. Also if π(n) (x) is the probability density, so that
π(n) (x) dx is the probability to be in the set [x, x+ dx) after n steps, then

π(n+1)
(
x′
)
=

∫

Ω
π(n) (x) p

(
x′|x

)
dx (7.19)

is the probability density at the next step. This should be compared with

π
(n+1)
j =

∑

i

π
(n)
i Pij (7.20)

for discrete Ω.

Definition: A probability density π (x) is stationary for p (x′|x) if

π
(
x′
)
=

∫

Ω
p
(
x′|x

)
π (x) dx, (7.21)

i.e., if the update preserves the distribution.

Assertion: The kernel p (x → dx′) is reversible with respect to the distribution π (x) iff

p
(
x′|x

)
π (x) = p

(
x|x′

)
π
(
x′
)

(7.22)

Notice that if p is reversible with respect to π then π is stationary for p (integrate both sides
dx).

Irreducibility is harder to state.

Definition: p (x′|x) is π-irreducible if for any set A ⊂ Ω with
∫

A π (x) dx > 0, Pr (Xn ∈ A for some finite n|X
0, so that the chain can hit any set that has finite probability in π.

Note that the last definition is not quite precise—see e.g., Tierney in “Markov Chain Monte
Carlo in practice” eds. Gilks, Richardson and Spiegelhalter.

Theorem (ergodicity from reversibility)
Let q (x) be a given probability density on Ω. If p (x′|x) is q irreducible and if p is reversible
and aperiodic with respect to q, then

∫

A π(n) (x) dx →
∫

A π (x) dx as n → ∞ for any set

A ⊂ Ω and starting distribution π(0).

We can get reversibility using the Metropolis-Hastings prescription as before. Suppose we
wish to generate a MC with unique probability density q (x) . LetXn = x. Xn+1 is determined
in the following way:

1. Select x′ with probability density g (x′|x).

2. Accept x′ (i.e., set Xn+1 = x′) with probability

α
(
x′|x

)
= min

{

1,
q (x′)
q (x)

g (x|x′)
g (x′|x)

}

If x′ is not accepted, then set Xn+1 = x.

151

7.5 Estimating the parameters of a Gaussian Distribution

Suppose that we collect K samples y = {y1, . . . , yK} from a normal distribution with mean
µ and standard deviation σ. We wish to estimate µ and σ from the sample. This a somewhat
contrived example in that there are only two parameters involved, and it is easy to visualize
the posterior probability p (µ, σ|y) without using Monte-Carlo methods. Nevertheless, it is
instructive to see how the problem may be solved via sampling from the posterior probability.

By Bayes’ theorem,

p (µ, σ|y1, . . . , yK) ∝ p (y1, . . . , yK |µ, σ) p (µ, σ) (7.23)

The likelihood function is determined by the forward problem. For a single sample from a
normal distribution,

p (yi|µ, σ) =
1

σ
√
2π

exp

[

−1

2

(
yi − µ

σ

)2
]

(7.24)

and so for K independent samples,

p (y1, . . . , yK |µ, σ) = 1

σK (2π)K
exp

[

−1

2

K∑

i=1

(
yi − µ

σ

)2
]

. (7.25)

Let us consider a prior probability which is the product of a non-informative prior for µ and
a non-informative prior for σ. If we initially consider any value of µ as being equally likely
as any other, we need to set p (µ) to be a constant. On the other hand, since σ measures
the width of the distribution, it must be non-negative. A possible choice is to make the
prior for σ “scale-invariant”. This means that we initially think that Pr (a ≤ σ < ka) to be
independent of a. This is equivalent to making the probability density uniform as a function
of log σ, or p (σ) ∝ 1/σ. Note that both of these priors are non-normalizable. This need not
be a problem if the likelihood function is sharp enough, as the posterior probability density
will be essentially independent of any limits we apply to the ranges of µ or σ in order to make
the priors normalizable. We thus choose p (µ, σ) ∝ 1/σ.

Substituting into Bayes’ theorem yields

p (µ, σ|y1, . . . , yK) ∝ 1

σK+1
exp

[

−1

2

K∑

i=1

(
yi − µ

σ

)2
]

(7.26)

Although this is not normalized, we already have enough information to use the MCMC
method to sample from the posterior density.

Let Xn = (µ, σ) . Xn+1 is found as follows

1. Let r1 and r2 be drawn from a uniform distribution on [0, 1] . Let w1 and w2 be positive
constants. Set

µ′ = µ+w1 (2r1 − 1) (7.27)

σ′ = σ + w2 (2r2 − 1) (7.28)

This means that the proposal density function is

g
(
µ′, σ′|µ, σ

)
=

{ 1
4w1w2

if |µ′ − µ| < w1 and |σ′ − σ| < w2

0 otherwise
(7.29)

Clearly g (µ′, σ′|µ, σ) = g (µ, σ|µ′, σ′) .

152

2. With probability

α
(
µ′, σ′|µ, σ

)
= min

{

1,
p (µ′, σ′|y1, . . . , yK)

p (µ, σ|y1, . . . , yK)

g (µ′, σ′|µ, σ)
g (µ, σ|µ′, σ′)

}

= min

{

1,
(σ

σ′

)K+1
exp

[

−1

2

K∑

i=1

{(
yi − µ′

σ′

)2

−
(
yi − µ

σ

)2
}]}

(7.30)

set Xn+1 = (µ′, σ′) , otherwise set Xn+1 = (µ, σ) . Note that if σ′ < 0 the posterior
probability p (µ′, σ′|y1, . . . , yK) is zero (since p (µ′, σ′) = 0) and we simply reject the
move.

From the samples {Xn} drawn from the posterior probability, we can plot histograms or
calculate statistics of interest.

0 2000 4000 6000 8000 10000
−1

0

1

2

3

MCMC Updates

µ

MCMC Output µ,σ|y

0 2000 4000 6000 8000 10000
1

1.5

2

2.5

3

3.5

MCMC Updates

σ

Figure 7.5: Samples from posterior probability distribution for the parameters of a Gaussian
obtained from K = 30 data points.

The Matlab code to carry out this simulation is:

K = 30;

mu = 1; sigma = 2;

y = mu + sigma*randn(K,1);

N = 10000;

m = 0; s = 1;

153

X = zeros(2,N);

w = 1;

for n = 1:N

mp = m + w*(2*rand-1);

sp = s + w*(2*rand-1);

ratio = (s/sp)^(K+1)*exp(-0.5*sum(((y-mp)/sp).^2-((y-m)/s).^2));

if sp>0 & rand<ratio

m = mp; s = sp;

end

X(:,n) = [m;s];

end

figure(1);

subplot(2,1,1); plot(X(1,:))

set(gca,’Fontsize’,14); xlabel(’MCMC Updates’); ylabel(’\mu’);

title(’MCMC Output \mu,\sigma|y’);

subplot(2,1,2); plot(X(2,:))

set(gca,’Fontsize’,14); xlabel(’MCMC Updates’); ylabel(’\sigma’);

figure(2);

subplot(1,2,1); hist(X(1,:),30)

set(gca,’Fontsize’,14); xlabel(’\mu’); ylabel(’Frequency’);

subplot(1,2,2); hist(X(2,:),30)

set(gca,’Fontsize’,14); xlabel(’\sigma’); ylabel(’Frequency’);

−1 0 1 2 3
0

200

400

600

800

1000

1200

1400

µ

F
re

qu
en

cy

1 2 3 4
0

200

400

600

800

1000

1200

1400

σ

F
re

qu
en

cy

Figure 7.6: Marginal posterior histograms for mean and standard deviation of a Gaussian.

154

7.6 Estimating diffusivity D from solution of a partial
differential equation

Suppose that u ≡ u (x, t) is the number density of some animal diffusing in the interval
[0, L] . The animal is killed if it leaves [0, L] so that u (0, t) = u (L, t) = 0. Local conservation
of number of animals gives the diffusion equation

∂u

∂t
= D

∂2u

∂x2
. (7.31)

At time t = 0, the population density is

u (x, 0) =

{
1 for 0.75L ≤ x ≤ 0.8L
0 otherwise

(7.32)

At time t = T, the population density is measured at points x1, x2, . . . , xK . Since the mea-
surements are inexact, the data vector is y =(yi) where

yi = u (xi, T) + εi (7.33)

and εi are normally distributed with standard deviation s. From these measurements, we
wish to sample from the posterior distribution of D, assuming that the prior distribution of
D is uniform on D ≥ 0.

By Bayes’ theorem,
p (D|y) ∝ p (y|D) p (D) (7.34)

The likelihood function is determined by the noise process. Given the diffusivity is D and
given the initial conditions, we may solve the partial differential equation and obtain the ex-
pected number density at the locations xi after a time T, namely u (xi, T ;D) . The probability
that we measure the data vector y is

p (y|D) =
K∏

i=1

p (εi = yi − u (xi, T ;D)) (7.35)

∝ exp

[

−1

2

K∑

i=1

(
yi − u (xi, T ;D)

s

)2
]

(7.36)

where we have absorbed into the proportionality quantities which do not depend on D.

For the prior, we may choose

p (D) ∝
{

1 if D ≥ 0
0 otherwise

(7.37)

As before, this is improper (i.e., not normalizable), but could be made proper without affect-
ing the analysis, for all practical purposes by imposing a conservative upper bound Dmax on
D.

The posterior probability density is thus given by

p (D|y) ∝

exp

[

−1
2

∑K
i=1

(
yi−u(xi,T ;D)

s

)2
]

if D ≥ 0

0 otherwise
(7.38)

We can estimate D given y using sample-based inference.

Let Xn = D, Xn+1 is given in the following way:

155

1. Let w be a positive constant. Draw r from a uniform distribution on [0, 1] and set
D′ = D + w (2r − 1)

2. With probability

α
(
D′|D

)
= min

1,

exp

[

−1
2

∑K
i=1

(
yi−u(xi,T ;D′)

s

)2
]

exp

[

−1
2

∑K
i=1

(
yi−u(xi,T ;D)

s

)2
]

set Xn+1 = D′, otherwise set Xn+1 = D.

Notice that at each step of the MCMC algorithm, we must compute u (xi, T ;D) , (i.e., solve
the boundary value problem for a trial value of D) to work out what the solution would have
looked like at T if the true diffusivity were given.

0
2

4
6

8
10

0

0.5

1

1.5

2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (t)

Space (x)

D
en

si
ty

 (
u)

Figure 7.7: Surface is u (x, t) with the true value of D and the points show the data measured
at T .

The Matlab code to carry out this simulation is:

L = 10;

D = 0.5;

s = 0.03;

Tmax = 2;

xdim = 25; tdim = 75;

x = linspace(0,L,xdim);

t = linspace(0,Tmax,tdim);

156

dx = x(2)-x(1); dt = t(2)-t(1);

q = dt/dx^2;

r1 = 0.75*L; r2 = 0.8*L;

u0 = zeros(1,xdim);

u0(find(x>=r1 & x<=r2)) = 1;

xDat = 2:xdim-1;

tDat = tdim;

nxDat = length(xDat);

ntDat = length(tDat);

Z = heat(D,u0,q,tdim);

u = Z(tDat,xDat);

uDat = u + s*randn(ntDat,nxDat);

figure(1); surf(x,t,Z); hold on;

if ntDat>1, mesh(x(xDat),t(tDat),uDat);

else set(plot3(x(xDat),t(tDat)*ones(1,nxDat),uDat,’r-o’),’LineWidth’,3);

end; hold off; drawnow

N = 10000; m = 100; XD = 1; X = zeros(1,N); X(1) = XD;

Z = heat(XD,u0,q,tdim);

u = Z(tDat,xDat);

oLLkd = sum(sum(-(u-uDat).^2))/(2*s^2);

LL = zeros(1,N); LL(1) = oLLkd;

w = 0.1;

for n = 2:N

XDp = XD + w*(2*rand-1);

if XDp > 0

Z = heat(XDp,u0,q,tdim);

u = Z(tDat,xDat);

nLLkd = sum(sum(-(u-uDat).^2))/(2*s^2);

alpha = exp(nLLkd - oLLkd);

if rand < alpha

XD = XDp;

oLLkd = nLLkd;

CZ = Z;

end

end

X(n) = XD; LL(n) = oLLkd;

if rem(n,m)==0

figure(2); plot(X(1:n)); drawnow;

figure(3); surf(x,t,CZ); hold on;

if ntDat>1, mesh(x(xDat),t(tDat),uDat);

else set(plot3(x(xDat),t(tDat)*ones(1,nxDat),uDat,’r-o’),’Linewidth’,3);

end; hold off; drawnow

disp([N/m,n/m]);

end

end

figure(2); plot(X);

The function for solving the diffusion equation is

157

0 2000 4000 6000 8000 10000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MCMC Updates

C
an

di
da

te
 D

Figure 7.8: Output of Markov chain producing samples from posterior distribution of the
diffusivity. True D value was 0.5.

function Z = heat(D,u0,q,tdim)

xdim = length(u0);

Z = zeros(tdim,xdim);

Z(1,:) = u0;

for tin = 2:tdim

tip = tin - 1;

Z(tin,2:end-1) = Z(tip,2:end-1) + ...

D*q*(Z(tip,1:end-2)-2*Z(tip,2:end-1)+Z(tip,3:end));

end

7.7 Optimization using Markov chain Monte Carlo

The Markov chain Monte Carlo method may be used to find the mode of a distribution,
which is an optimization problem.

7.7.1 Simulated Annealing

The mode of a distribution is the state of highest probability. In Bayesian analysis, the mode
is the state of “maximum à posteriori probability” (the MAP state) and is often presented
as the final “answer” in the analysis. This is generally unsatisfactory as it tells us nothing
about the degree of uncertainty which our limited data admits to the reconstructed system
state. Nevertheless, we are often interested in finding the mode of a function when the state
space is large and the distribution is a complicated function of the state.

158

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

Diffusivity (D)

F
re

qu
en

cy

Figure 7.9: Posterior distribution of diffusivity. True D value was 0.5.

Let Q (x) be a given probability density on a space Ω. Let Qmax be the maximum value of
Q in Ω. Let Γ = {x : Q (x) = Qmax, x ∈ Ω} be the mode set or the set of modal states, (i.e.,
there may be more than one). We write

Q (x) = exp [−q (x)] (7.39)

where q (x) = − lnQ (x) and introduce a “temperature” parameter T such that

QT (x) =
exp [−q (x) /T]

ZT
(7.40)

where ZT is an unknown normalizing constant.

Consider two states x and x′ ∈ Ω such that x is a mode (i.e., x ∈ Γ) but x′ is not modal (i.e.,
x′ /∈ Γ). Since Q (x′) < Q (x) , q (x′) > q (x) and so the ratio

QT (x′)
QT (x)

= exp

[
q (x)− q (x′)

T

]

(7.41)

tends to zero as T → 0. Hence as T → 0, all probability mass in distribution QT is concen-
trated on states in Γ: we can find modal states (or state) by sampling QT (x) at small T,
using MCMC.

Roughly, the idea is to run a MCMC algorithm with equilibrium distribution πT = QT .
If the chain is in equilibrium at temperature T (ie π(n) = QT) at step n and we lower the
temperature to T ′ < T , we must then wait for the chain to equilibrate at the new temperature.
We lower the temperature slowly, so that the chain remains in or close to equilibrium with

159

QT at each new temperature. At small T πT ∼ 1/|Γ| and our MCMC returns a sample
uniform on the mode states.

Suppose an ergodic Metropolis-Hastings algorithm with generation distribution g(x′|x) is
given. The algorithm simulates some Markov chain with states x ∈ Ω, initializing distri-
bution X0 ∼ Pr{X0 = x} and equilibrium distribution Q(x) = exp(−q(x))/Z. Specify
T (n), a decreasing function of n called the cooling or annealing schedule. The following
Simulated Annealing Algorithm simulates an inhomogeneous Markov Chain.

Let Xn = x. Xn+1 is determined in the following way.

1. Generate candidate state x′ from g (x′|x)
2. With probability

α = min

{

1, exp
[
−
(
q
(
x′
)
− q (x)

)
/T (n)

] g (x|x′)
g (x′|x)

}

set Xn+1 = x′, otherwise, set Xn+1 = x.
Definition 7.1 If π(n) becomes uniform on Γ as n → ∞, ie if Pr

(
x(n) ∈ Γ

)
→ 1 as n → ∞,

we say that the annealing “converges”.
Definition 7.2 Let Q (x), x ∈ Ω be a given distribution with mode-set Γ. A state x ∈ Ω
communicates with Γ at height h if there is a path from x into Γ with the property that the
largest value of q = − lnQ along the path is q (x) + h.

Theorem 7.1 Annealing theorem (Hajek, 1988)

Let Q (x) , x ∈ Ω be a given distribution with mode-set Γ. Let d∗ be the smallest number
such that every x ∈ Ω communicates with Γ at height d∗. The simulated annealing algorithm
converges if and only if

∞∑

n=1

exp [−d∗/T (n)] = ∞

Corollary 7.1 If T (n) = d/ log (n) then simulated annealing converges iff d ≥ d∗.

Simulated annealing is an optimization algorithm. If q (x) is a cost function on the states x ∈
Ω, simulated annealing can be used to minimize q (x) . Refer to the “travelling salesperson”
problem.

Although the simulated annealing algorithm with schedule T (n) = d/ log (n) is guaranteed
to converge, it does so too slowly to be of practical value. Also, d∗ is hard to estimate. More
rapid cooling is usually done. The output is checked by repeating the experiment with a
varying random number seed, and making sure that we get the same answer each time.

There is a physical analogy. The process simulates the physical process of “annealing”, i.e.,
slowly cooling, a material to get special, highly ordered crystalline states.
Example 7.1 Using simulated annealing, find the maximum à posteriori state of the matrix
reconstruction problem of section 7.3 with the binary Markov random field prior.

Q is our posterior Q(x) = Pr (D = x|g, σ). We revise the algorithm of section ??, introducing
a factor 1/T (n) in the power of the exponential. We take as an annealing the schedule the
unreliable geometric schedule T (n) = rnT0 with 0 < r < 1 a real constant and T0 an initial,
top temperature. In the notation of Section ??, the algorithm is as follows.

Let Xn = x. Xn+1 is determined in the following way.

1. Given x = (x1,1, x1,2, ..., xN,N), pick one of the N2 pixels (m,n) at random.

160

Set x′ = (x1,1, x1,2, ...− xm,n, ..., xN,N) .
2. With probability

α
(
x′|x

)
= min

{

1, exp
(

−2(J#∆mn +
xmn

σ2
(rm + cn − [x]m − [x]n + 2xmn))/T (n)

)}

set Xn+1 = x′. Otherwise we set Xn+1 = x.

Sample output is shown in Figure 7.10. If we compute the ratio of the posterior probabilities

(b)(a1) T=4.4 (a2) 2.9 (a3) 1.9 (c)(a1) T=0.2

Figure 7.10: Estimating the mode of the posterior for the matrix estimation problem of
Section 7.3. Sequence (a1-4) annealing with r = 0.99999995 and T0 = 10. (b) Same cooling
schedule, different random number seed. (c) annealing with r = 0.999999 and T0 = 2.

for states 7.10(a4) and (b), Pr (D = (a4)|g, σ) /Pr (D = (b)|g, σ) we obtain a value around
unity. However states 7.10(a4) and (c) have a posterior ratio of around exp(−655)/ exp(−590) ∼
10−28. If the cooling schedule descends too rapidly, the MCMC becomes stuck in the unrep-
resentative, sub-optimal state Figure 7.10(c).

161

8

Output Analysis

8.1 Introduction

Let X0 = x(0),X1 = x(1) . . . XN = x(N) be a realization of a homogeneous and reversible
Markov chain, output by some MCMC algorithm which was set up to sample a distribution
Q(x) on states x ∈ Ω. For example {x(n)}Nn=0 might be output from one of the following
MCMC algorithm’s:

1. the algorithm sampling the posterior for the matrix reconstruction problem from row
and column sums,

2. the algorithm sampling the normal distribution.

Suppose X ∼ Q(.) is a random variable taking values in Ω. A function f(X) is called a
statistic. We look to the output for answers to questions like “What is the expected value of
f(X)” — i.e., give a value for

〈f(X)〉 ≡
∑

x∈Ω
f(x) Pr(x).

We can estimate this from the output sample set {x(n)}Nn=0. The quantity

f̄N ({x(n)}Nn=0) ≡
1

N

N∑

n=1

f(x(n))

is called an estimator of 〈f(X)〉. Since the samples {x(n)}Nn=0 are realizations of random
variables {Xn}Nn=0, our estimate, f̄N ({Xn}Nn=0), is itself a random variable. We will get a
different estimate value at each “trial”, that is, each time we gather a realization {x(n)}Nn=0

of the r.v. {Xn}Nn=0.

Example 8.1 If the
{
x(n)

}N

n=0
were sampled independently from a normal distribution mean

µ, variance σ2, f (x) = x and x̄ =
∑

n x
(n)/N is an estimator for µ. In this case x̄ is a normally

distributed random variable with mean µ and variance σ2/N .

Example 8.2 Using the output in case (2) above, find a statistic giving the probability for
the variable at pixel (j, k) to take the value xjk = −1.

163

Answer If A and not-A are two possible outcomes of a trial then

Pr (event A) ≃ #times A occured

number of trials

estimates the probability for the event A. Let f(x) = I[xjk = −1], i.e., f(x) is the indicator
function, I[assertion] = 0/1 if assertion is true/false. Now

f̄N =
1

N

N∑

n=1

I(x
(n)
jk = −1) (8.1)

=
#times xjk = −1 in the sampled states

{
x(n)

}N

n=0

number of samples
(8.2)

so our statistic f = I[xjk = −1] gives an estimator f̄N for Pr(xjk = −1)

How good an estimator for 〈f (X)〉 is fN? There are two issues:

1. Systematic error due to initialization bias — i.e., does f̄N estimate 〈f (X)〉 at all?
We may prove that π(n) tends to some desired unique equilibrium distribution Q (x) ,
however we have not said how large n needs to be for π(n) ≈ Q (x) . Multi-modality in
Q and bugs in our computer program can be a problem here.

2. Autocorrelation in equilibrium — i.e., given π(n) = Q (x) , for some n, how accurate is
f̄N as an estimator for 〈f (X)〉? Samples x(n), x(n+1) are highly correlated. How many
samples should we take to achieve a given level of accuracy?

8.2 Autocorrelation in equilibrium

Recall that the variance of a quantity is a measure of the variability of the quantity about
its mean. Thus if x ∼ Q(x), and µf ≡ 〈f(X)〉,

var(f) =
〈
f(X)2 − µ2

f

〉

measures the variance of f in samples x distributed like Q(x). Consider the quantity f̄N .
var(f̄N) is a measure of the variability of our estimator for µf .

We can quantify this statement. It is known that, under quite general conditions which we
will not detail (see e.g. Geyer), for N sufficiently large,

f̄N ∼ Normal
(
〈f〉 , var(f̄N)

)
(8.3)

i.e., whenN is large, our estimate f̄N is normally distributed with mean 〈f〉 and some variance
var(f̄N). Equation 8.3 is usually written as a theorem concerning the limit

lim
N→∞

√
N(f̄N − 〈f〉) D→Normal (0, c) (8.4)

with c some positive constant, independent of N . The limit “
D→” means that the distribution

of the random variable on the left tends to the distribution on the right, i.e., normal, mean
zero. Equation 8.4 is a statement of a “central limit theorem” concerning the distribution of
f̄N .

164

If {x(n)}Nn=0 were independent samples and f̄N ≡ 1
N

∑N
n=1 f(x

(n)) then

var(f̄N) = var(f)/N (8.5)

However {x(n)}Nn=0 is a sequence of correlated samples from a Markov chain. We will see that

var(f̄N) =
τfvar(f)

N
(8.6)

where τf is a number characteristic of the transition matrix of the Markov chain used to
generate the sequence {x(n)}Nn=0. It follows from Equation 8.6 that c = τfvar(f) independent
of N , in Equation 8.4.

Interpretation: In Equation 8.5 the variance of f̄N goes down like 1/N , where N is the
number of independent samples. In Equation 8.5 the variance of f̄N goes down like τf/N .
Hence τf is the number of correlated samples with the same variance-reducing power as
one independent sample. The quantity τf is called the integrated autocorrelation time
(IACT, in physics literature) or autocovariance time (statistics literature).

Let σf̄N ≡
√

var(f̄N) denote the standard deviation of our estimate f̄N . We are assuming
N is large enough that the central limit theorem we quoted has set in and f̄N is normally
distributed. We use all of this information when we put error-bars on f̄N : we report something
like “we measured f and obtained a mean of f̄N ± 2σf̄N at 95% confidence”.

For a given equilibrium distribution Q(x), we would like to design a chain for which τf is as
small as possible, so that we get accurate estimates (small σf̄N) without needing large sample
sizes N .

8.3 Calculating the integrated autocorrelation time

The covariance cov(f, g) of two quantities f and g is a measure of their correlation. Let
M = {Xn}N−1

n=0 be a sequence of N stationary random variables in some given homogeneous
Markov chain with equilibrium distribution Q, i.e., X0 ∼ Q, so that all the r.v. in the
sequence are distributed according to the equilibrium distribution. In terms of some statistic
f(X), let

Cff (s) ≡ cov (f(Xn), f(Xn+s)) (8.7)

≡ 〈f(Xn)f(Xn+s)〉 − µ2
f (8.8)

be the autocovariance function (ACF) at lag s, i.e., Cff (s) is the covariance between the
values taken by f for two r.v. Xn and Xn+s in the chain separated by s updates. Since the
chain is homogeneous and its distribution is stationary, Cff (s) depends only on s and not on
n. For a Markov chain, this gets larger the closer the two states are together. If we define a
normalized autocovariance function, ρff (s) via

ρff (s) = Cff (s)/Cff (0)

= Cff (s)/var(f)

then ρff (0) = 1 — so f(Xn) is perfectly correlated with itself! We expect ρff (s) → 0
monotonically as s → ∞ (see Figure 8.1). Note that some authors refer to Cff as the
“autocorrelation function” although we reserve this usage for the case where the means have

165

ρff

M s

1

Figure 8.1: The normalised autocovariance function ρff (s).

not been subtracted. We will assume that for some M sufficiently large ρff (s) ≃ 0 when
s ≥ M . We will assume also that N ≫ M , so that the first x(0) and last x(N) samples are
totally uncorrelated. We will show that under those assumptions var(f̄N) = τfvar(f)/N , as
asserted in Equation 8.6.

var
(
f̄N
)
=
〈
f̄2
N

〉
−
〈
f̄N
〉2

(8.9)

=

〈(

1

N

N∑

n=1

f (Xn)

)(

1

N

N∑

m=1

f (Xm)

)〉

−
〈

1

N

N∑

n=1

f (Xn)

〉2

(8.10)

=
1

N2

N∑

n=1

N∑

m=1

〈f (Xm) f (Xn)〉 −
〈
f2
〉

(8.11)

since 〈f (Xn)〉 = 〈f〉, independent of n, if the chain is homogeneous and stationary. Now, if
M ≪ N,

N∑

n=1

N∑

m=1

〈f (Xm) f (Xn)〉 ≈
N∑

n=1

[

〈f (Xn) f (Xn)〉+ 2
N−M∑

s=1

〈

f (Xn) f
(

x(n+s)
)〉
]

(8.12)

=

N∑

n=1

[

Cff (0) + 〈f〉2 + 2

N−M∑

s=1

Cff (s) + 〈f〉2
]

(8.13)

and so,

var
(
f̄N
)
=

1

N2

N∑

n=1

var(f) + 2
N−M∑

s=1

Cff (s) (8.14)

≃ var(f)

N2

N∑

n=1

[

1 + 2

M∑

s=1

ρff (s)

]

(8.15)

≃ var(f)τf
N

(8.16)

as asserted in the previous section, with

τf ≡ 1 + 2
∞∑

s=1

ρff (s).

166

τf is the integral of the normalized autocovariance function ρff (s), because ρff (s) = ρff (−s),
and ρff (0) = 1. To estimate τf from the output {x(n)}Nn=1 of an MCMC algorithm, we
estimate Cff (s) by

C̄ff (s) =
1

N

N∑

n=1

f
(

x(n)
)

f
(

x(n+s)
)

− 1

N2

[
N∑

n=1

f
(

x(n)
)
]2

and then compute an estimate ρ̄ff (s) for ρff (s) as above. A problem remains.

Since N is finite, the estimates ρ̄ff (s) are noisy. We expect ρff (s) ≃ 0 when s ≥ M , so the
signal goes to zero, and at large s, s ≥ M say, ρ̄ff (s) is pure noise. If we were to form our
estimate τ̄f for τf by summing over all s, including s ≥ M , we would be adding noise and
no signal to our estimate for τf . We must truncate the sum over ρ̄ff (s) at s = M . We must
decide from the data at what lag s noise begins to dominate. There are several approaches.
The method outlined in Geyer is practical, as well as being theoretically well motivated. Well
tested software exists to estimate all the quantities defined in this section. See for example
code available through the R package.

Example 8.3 We will illustrate output analysis on the output of the MCMC algorithm given
on page 7-23, for sampling the normal distribution with a mean µ = 3 and standard deviation
σ = 1.

A realization of length 10000 updates was obtained. The first 200 updates (see Figure 8.2)

0 50 100 150 200
MCMC updates

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

X
n

−
 M

C
M

C
 s

ta
te

Converging MCMC for Normal distribution

Figure 8.2: The converging sequence of MCMC updates.

were discarded, to allow time for π(n), the distribution of the Markov chain r.v. at step n, to
converge to its equilibrium distribution, which, in this case, is the normal distribution. The
full output is graphed in Figure 8.3. So we have a sample sequence {x(n)}n=10000

n=200 of length
N = 9800. The mean of the x(n) was x̄ ≃ 3.026 (i.e., f(x) = x above so that µ = 〈f〉 and
x̄ ≡ f̄N). The variance (i.e., σ2 = var(x) above) was estimated at σ̄2 ≃ 0.97. In order to
determine the variance of x̄ the normalized ACF ρ̄xx(s) was estimated from the same output
data, as above. This estimated ACF is plotted in Figure 8.4. τx was calculated using the

167

0 2000 4000 6000 8000 10000
MCMC updates

−2.0

0.0

2.0

4.0

6.0

8.0

X
n

−
 M

C
M

C
 s

ta
te

MCMC sequence for Normal distribution

Figure 8.3: The sequence of 10000 MCMC updates output.

0.0 50.0 100.0 150.0 200.0
Lag s in MCMC updates

0.0

0.5

1.0

no
rm

al
is

ed
 A

C
F

 ρ
ff
(s

)

Normalised Autocorrelation function ρff(s)

Figure 8.4: The normalised autocovariance function of the MCMC.

168

estimator,

τ̄x = 1 + 2
M∑

s=1

ρ̄xx(s)

with M = 23 (see Figure 8.4). This gave an estimate of τ̄ ≃ 14.5 for τ . This means that it
takes around fifteen updates of the MCMC to give one effective independent sample. Now
we estimate

var(x̄) =
σ̄2τ̄x
N

≃ 0.0014

So we might reasonably report

x̄ = 3.03 ± 0.08

at 95% confidence (where 0.08 ≃ 2
√
0.0014).

Exercise 8.1 How could we check the result for var(x̄), using 10 independent runs of length
10000 ?

Answer Taking the output from each of the 10 runs we form 10 independent estimates
x̄1, x̄2 . . . x̄10. According to the CLT we quoted in Equation 8.4 these estimates should be
scattered about µ with a normal distribution with variance equal around about var(x̄) =
0.0014.

Note: If its so easy to estimate the variance of x̄ by repeating the run, why bother with the
calculation of τf ? Because it is only by using all your data you get all the accuracy available.
Also, plotting ρ̄ff (s) is a sensible way to check for convergence.

In practice we are interested in getting var(f̄N) down as small as possible (i.e., getting accurate
estimates). We can do this by taking more samples. We can also look at the efficiency of
our algorithm. We are free to choose the candidate generation probability g(x′|x), and this
has a big effect on the rate at which correlations die out along the chain. Good algorithms
have smaller IACT τf , since this leads to smaller values of var(f̄N) for given sample size
N . Now τf is measured in MCMC updates. An update takes a certain amount of CPU
time. So really we want τf small in CPU seconds. If some fancy algorithm had a small
τf -value, but each update took a lot of time to compute, the accuracy of estimates would
still only improve slowly. This is why simple algorithms (i.e., simple choices for the candidate
generation probability g(x′|x)) are hard to beat.

Example 8.4 In the MCMC algorithm sampling the normal distribution, we generated can-
didate states using G(dx′|x) = dx′/2σ, i.e., the new state was chosen uniformly on the interval
[x− a, x+ a] with a = σ. Can we reduce τf by using some other value of a ?

The core loop of our sampler (page 7-23) is essentially unchanged

.

.

a=input(’enter jumpsize ’); %enter ‘‘a’’ used in generation step

for k=1:N

xp=x+(2*a*rand(1,1)-a); %generate candidate with jumpsize ‘‘a’’

ratio=exp(-((xp-mu)^2-(x-mu)^2)/(2*sigma^2));

if rand(1,1)<ratio

x=xp;

169

end;

Xn(k)=x;

end;

.

.

This MCMC algorithm simulates a Markov chain with the normal distribution as its equi-
librium distribution for a any non-zero real number. Suppose the mean µ = 3 and standard
deviation σ = 1 as before. For each of a sequence of a-values we run the MCMC and analyze
the output, computing τx(a). In Figure 8.5, τx is plotted against a. The IACT is minimized

0 2 4 6 8
jump−size a

0

5

10

15

20

IA
C

T
 τ

x

MCMC efficiency

Figure 8.5: The normalised autocovariance function ρff (s).

by a value of jump size of around a = 3.5. This tells us that the chain outputs the greatest
number of effectively independent samples per N updates when the jump size is around 3.5.

Interpretation Referring to Figure 8.6, when a ≪ σ, the candidate state x′ ≃ x, and in the
acceptance ratio exp(−(x′ − µ)2/2σ2 + (x − µ)2/2σ2) ≃ 1, and hence α ≃ 1. Most updates
are accepted, but since the jump from x to x′ is small the chain moves slowly through Ω
and the r.v. Xn and Xn+1 are highly correlated. On the other hand when a ≫ σ, x′ will
often be selected well outside the interval [µ − 3σ, µ + 3σ] where all the probability mass
is concentrated. The ratio of the new and old probability densities will be small, and the
acceptance probability α will be small. Although the chain makes large hops when it does
move, there are too many rejections: Xn and Xn+1 are highly correlated, because they are
often equal !

170

0 100 200 300 400
 MCMC updates

−5.0

0.0

5.0

10.0

 M
C

M
C

 s
ta

te
 X

n

0 100 200 300 400

−5.0

0.0

5.0

10.0

0 100 200 300 400

−5.0

0.0

5.0

10.0

MCMC output

0 20 40 60
 lag s updates

0.0

0.5

1.0
 N

o
rm

al
is

ed
 A

C
F

 ρ
ff
(s

)

0 20 40 60

0.0

0.5

1.0

0 20 40 60

0.0

0.5

1.0

Autocorrelation function

A1 A2

B1 B2

C1 C2

Figure 8.6: (A1) MCMC output for a = 1 (A2) normalised autocovariance function ρxx(s)
for a = 1. Although there is a high probability of acceptance, the sample path shows strong
correlation from one update to the next. (B1) MCMC output for a = 3.5 (B2) ρxx(s) for
a = 3.5. The normalized autocovariance ρxx(s) between Xn and Xn+s now falls off rapidly
with increasing lag s. (C1) output for a = 8 The stepped appearance of the output reflects
the low acceptance rate (C2) ρxx(s) for a = 8, the correlation between states in the chain
dies off slowly.

8.4 Initialization bias

Suppose we have an MCMC algorithm with intended equilibrium distribution Q(x). We have
seen (Figure 8.2) that the initial samples generated by MCMC are not representative of the
equilibrium distribution. How long should we simulate before beginning to take samples?
There is no general solution to the problem. A novel technique called “Exact simulation”
offers a complete solution for certain MCMC algorithms and certain equilibrium distributions
(Propp and Wilson 1995), including several of importance in statistical mechanics.

The usual approach is to monitor the behavior of some statistic (for example, q(x(n)), where
Q(x) = exp(−q(x))/Z) and drop samples from the part of the run where q(x(n)) is converging
to its equilibrium range. Referring to the MCMC output in Figure 8.7, our output sample
would consist of x(n) for n ≥ k only. We are assuming that, for n ≥ k Xn ∼ Q, i.e., π(n) = Q

171

nX

k MCMC update n

Figure 8.7: A MCMC algorithm started at an unrepresentative state converges to its equi-
librium range.

for n ≥ k. If the total run length N ≫ k this has a negligible effect on estimates, i.e.,

f̄N−k =
1

N − k

N∑

n=k

f(x(n))

when the first k samples are dropped.

8.5 Sticking and multimodality

We do not know when the chain has reached equilibrium. Considering Figure 8.8 it is clear

nX

MCMC update nk ? k ?

Figure 8.8: The chain may appear to be in equilibrium, when it is in fact in a metastable
state.

that any judgement based on output may be premature. It may be that the generation
probability g(x′|x) can take the chain to any state in the state space Ω, but sections of Ω
communicate only through states of very low acceptance probability. The chain may be stuck
in the vicinity of one mode if Q(x) is a multimodal distribution.

Example 8.5 Suppose Q(X ∈ dx) is the sum of two normal distributions with means µ1 and
µ2 (µ2 > µ1) and each having the same standard deviation σ. So, if Q(X ∈ dx) = q(x)dx,
the density is

q(x) =
1

2
√
2πσ2

(

e−(x−µ1)/2σ2
+ e−(x−µ2)/2σ2

)

.

172

We will suppose that the two normal distributions are “separated” in the sense that µ2−µ1 ≫
σ. See Figure 8.9. Now, for our MCMC algorithm with equilibrium Q(x) we might choose

µ2µ1

σ σ

Figure 8.9: A distribution in which two regions of higher probability are separated by a region
of low probability.

the following:

Let Xn = x. Xn+1 is determined in the following way.

1. choose x′ uniformly in an interval [x− a, x + a] centered at x. Thus x′ ∼ dx′/2a and the
density 1/2a is (trivially) symmetric in x and x′.

2. With probability

α = min

{

1,
exp

(
−(x′ − µ1)/2σ

2) + exp(−(x′ − µ2)/2σ
2
)

exp (−(x− µ1)/2σ2) + exp(−(x− µ2)/2σ2)

}

set Xn+1 = x′. Otherwise we set Xn+1 = x.

This algorithm has a straightforward Matlab implementation. The choices µ1 = −4, µ2 = 4
and σ = 1 give a wide region of low probability between lumps. Sample output for these
parameter values and a range of jump sizes a is shown in Figure 8.10, along with autocovari-
ance functions. Ergodicity is effectively lost for a less than around 4. The very slowly falling
autocovariance function for a = 4, middle row right, indicates this. However at a = 1 the
output is giving the illusion of an ergodicity that is not present - there is no sign of states at
values x = 4 even though they hold half the probability mass. The MCMC is stuck in the
mode around x = −4.

8.6 Good habits

We have seen that there is no guaranteed adequate output analysis. In particular, practical
convergence cannot be demonstrated in general. The following procedure is however often
sufficient.

1. Take a single long run, of length N , dropping states from the start of the run, and
estimate τf , for f(X) a statistic you care about.

2. Check that N ≫ τf . This is the only meaningful definition of a “long” run.

173

0 200 400 600 800 1000
MCMC update

−8

−6

−4

−2

0

M
C

M
C

 o
u

tp
u

t
st

at
e

0 200 400 600 800 1000
−10

−5

0

5

10

0 200 400 600 800 1000
−10

−5

0

5

10

MCMC output

0 50 100 150 200
Lag, s in updates

0.0

0.5

1.0

 n
o

rm
al

is
ed

 A
C

F
0 20 40 60 80 100

0.0

0.5

1.0

0 50 100 150 200

0.0

0.5

1.0

Normalised ACF ρff(s)

Figure 8.10: Illustration of initialisation bias and sticking: Output for MCMC sampling the
multi-modal distribution of Figure 8.9. Top row, a = 8 (ergodic), middle row a = 4 (very
slow mixing, strong initialisation bias), bottom row a = 1 (stuck).

3. Plot the output x(n), or f
(
x(n)

)
against n. Does it show any obvious trend ? Does it

seem to be “in equilibrium” ?

4. Plot the normalized autocovariance function ρff (s) against lag s. It should fall off
smoothly to zero, and then be distributed more or less evenly, with noise, about the
x-axis.

5. Read Geyer “MCMC in practice”, Statistical Science article, for some checks on the
asymptotic variance of the autocorrelation function as s →large.

174

