
Mid- and high-level representations for inverse

problems in PDEs

Colin Fox

fox@physics.otago.ac.nz

Ville Kohlemainen (Kuopio), Geoff Nicholls (Oxford UK)

Markus Neumayer (Graz), Daniel Watzenig (Graz)



Representations

Observation space is determined (finite set of numbers on a computer)

How to represent the unknown x is always a modelling choice

Spatially-distributed parameters often modelled using stochastic models from spatial statistics,

pattern theory, stochastic geometry :

Hurn Husby & Rue (2003) classified representations/priors as

• Low level: pixel based, linear space, often GMRF, can impose local properties

• Mid level: capture some global features, often good for geometric information, e.g. bound-

aries/areas

• High level: objects modelled directly, good for counting number of objects

Representation of knowledge in complex systems, Grenander & Miller JRSSB 1994



3 books



What questions are we trying to answer?PHYSICS 707 Inverse Problems, G.K. Nicholls and S.M. Tan, The University of Auckland 8-2

Figure 8.1 A binary image f and a noise-corrupted data set d obtained by adding samples of independent zero
mean Gaussian noise of standard deviation ¾ = 2 to the image.

The likelihood function for this problem is given by

Pr (djf) / exp
"
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#
:

In order to ¯nd the posterior probability function, a prior probability distribution Pr (f) is required. This
encodes our state of knowledge about which images are (µa priori, without any data) more likely to occur.
For example, we might

1. have no prior prejudice whatsoever, i.e., Pr (f) = 2¡MN ; which is uniform on ­:

2. favour smooth images: since the material is likely to be in lumps, we regard reconstructions in which
the 1's and -1's separate out in blobs as a priori more probable. In this case, the binary Markov
random ¯eld of the last section might make a reasonable choice:

Pr (f) =
1

Z exp (¡2J#f) ; (8.2)

where J is our lumping parameter. When J = 0; there is no smoothing, whereas if J is large, we
favour a uniform image of a single colour. A model which favours \simple" reconstructions is called
parsimonious.

8.2.1 Uniform Prior

If we use the uniform prior, the posterior probability is equal to the likelihood. An implementation of the
Metropolis-Hastings Markov Chain Monte Carlo (MH MCMC) algorithm which draws samples from the
posterior probability involves the following steps:

1. Let Xn = f denote the current state of the Markov chain. A pixel with coordinates kl is selected at
random and the colour of the pixel is °ipped, producing a candidate state f 0 where

f 0ij =
½ ¡fkl if i = k and j = l

fij otherwise
(8.3)

The generation probability g (f 0jf) is zero if f 0 and f di®er by more than one pixel, and is equal to
1= (MN) if they di®er by exactly one pixel.

• “best” image

• How many blobs (when segmented into black and white)?

• What is the area of the blob ?

• Genus of the blob? (‘C’ or ‘O’)

A representation should make it easy to calculate information or quantities of interest.

If you want to know where the boundary is, then represent the boundary explicitly!



Automated inspection of BGAs by limited-angle X-ray



Low-level representation gives ‘coneheads’

Standard processing is:

• Produce pixel/voxel image

• Classify image

≥ 4% misclassification unprofitable for consumer electronics (this gives ≈ 20%)



Mid-level representation (surface)

Inverse problem ill-posed with low-level representation (about 15 times too few measurements)

Surface representation shows actually about 5 times more than enough measurements



CSG representation

a contains b a excludes b primitives

This algebraic representation is very difficult for MCMC, but produces great results.



Coloured Continuum Triangulation

X =
∞⋃
i=0

{[0, 1]× [0, 1]}i , coloured

Nicholls 1998 Bayesian image analysis with Markov chain Monte Carlo and colored continuum triangu-

lation models JRSSB



Neolithic hill fort (Maori pa)
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A) data, 1746 resistivity readings, (B) posterior mean resistivity, (C) posterior edge length density,

(D1-3) samples from posterior



Marked Point Process
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Figure 7: A second data slice (top); a sample from the posterior after 20,000 iterations (middle);

histogram of the cell attributes eccentricity, size and intensity (bottom).

automatic method would have been ideal, this is a small amount of interaction compared to the previous

approach of outlining the whole perimeter of each cell.

Given a sound initialisation, MCMC sampling provides a straightforward framework for estimating

the parameters of fitted cells and relating these to the phases in cell development. For example, we can

generate interval estimates of typical cell size or other population attributes. Figure 7 shows another

example of a data image, together with a sample image from the posterior distribution and histograms

of three cell attributes: the average eccentricity (ratio of minor to major axis length), average size and

average intensity in the cell population. Here, attribute values were recorded at regular intervals during

the MCMC run of 20,000 iterations.

21

Fahimah Al-Awadhi, Christopher Jennison, Merrilee Hurn 2004 JRSSC (Appl. Statist.)



Computing lab today : count good/bad cells
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More Exciting State Spaces

Josiane Zerubia, Xavier Descombes, C. Lacoste, M. Ortner, R. Stoica (2000, 2003)



U.N. voting patterns 1990 – 2006
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Electrical capacitance tomography

• Measure inter-electrode capacitances (1 fF to 5 pF)

q = Cv

• Non-invasively image permittivity ε

• Primarily interested in (2-dim) area of inclusion



ECT measurement system

Region of interest

Tube

Electrodes

Grounded shield
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Assert NM potential vectors vm =
{
vm1 , v

m
2 , . . . , v

m
NE

}T
, for m = 1, 2, . . . , NM

Resulting potential fields denoted um

Measure vector of (displacement) charges is qm =
{
qm1 , q

m
2 , . . . , q

m
NE

}T

qm is a linear function of vm, hence

q = Cv

where C is the NE ×NE matrix of trans-capacitances.



Forward map G
ECT

∇ · (ε∇u) = 0 in Ω ∪ ΩE

u|∂Ωk
= vk k = 1, 2, . . . , NE, S

Measured charge related to fields by

qk =

∫
∂Ωk

ε∇u · n dl, k = 1, 2, . . . , NE

EIT
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Data simulation requires NM ∼ 16 solves of the Dirichlet (Neumann) BVP.

SNR of 1:1000 provides 105 measurements + 5 per factor of 10 (further measurements give
√
n noise improvement). Correlation = 1-0.

Big names (Ohm, Kirchhoff, Laplace, Maxwell), but the biggest source of error!

π(ε | q) ≈ πn(q−G(ε))πpr(ε)



FEM Mesh for ECT
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Represent boundary by implicit RBF (or polygon)

Represent boundary by N point implicit RBF x

Naive prior uniform in node position: πpr(x) = I(allowable contour)

For large area πpr(area) ∝ (area)−1/2
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Specify a prior explicitly in terms of area Γ(x) and circumference c(x)

π(x) ∝ exp

{
− 1

2σ2
pr

(
c(x)

2
√

Γ(x)π
− 1

)}
I (x)



Posterior estimates (measured data)

 

 

Pipe
MAP
CM

Quantities true values mean standard deviation IACT

x-coordinate of center [m] – 3.71×10−2 2.32×10−5 5.89×102

y-coordinate of center [m] – -1.14×10−2 3.02×10−5 4.65×102

Area Γ [m2] 3.14×10−4 3.13×10−4 6.88×10−6 1.10×103

Circumference c [m] 6.28×10−2 6.24×10−2 1.57×10−4 1.88×103

Log-likelihood – -46.10 1.72×10−1 3.99×102
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