# Mid- and high-level representations for inverse problems in PDEs 

Colin Fox<br>fox@physics.otago.ac.nz



Ville Kohlemainen (Kuopio), Geoff Nicholls (Oxford UK) Markus Neumayer (Graz), Daniel Watzenig (Graz)

## Representations

Observation space is determined (finite set of numbers on a computer)

How to represent the unknown $x$ is always a modelling choice
Spatially-distributed parameters often modelled using stochastic models from spatial statistics, pattern theory, stochastic geometry :

Hurn Husby \& Rue (2003) classified representations/priors as

- Low level: pixel based, linear space, often GMRF, can impose local properties
- Mid level: capture some global features, often good for geometric information, e.g. boundaries/areas
- High level: objects modelled directly, good for counting number of objects

[^0]
## 3 books

MARKOV POINT PROCESSES AND
THEIR APPLICATIONS

M. N. M. van Lieshout


WILEY SERIES IN PROBABILITY AND STATISTICS

## What questions are we trying to answer?



- "best" image
- How many blobs (when segmented into black and white)?
- What is the area of the blob ?
- Genus of the blob? ('C' or 'O')

A representation should make it easy to calculate information or quantities of interest. If you want to know where the boundary is, then represent the boundary explicitly!

## Automated inspection of BGAs by limited-angle X-ray



## Low-level representation gives 'coneheads'

Standard processing is:

- Produce pixel/voxel image

- Classify image
$\geq 4 \%$ misclassification unprofitable for consumer electronics (this gives $\approx 20 \%$ )


## Mid-level representation (surface)



Inverse problem ill-posed with low-level representation (about 15 times too few measurements) Surface representation shows actually about 5 times more than enough measurements

## CSG representation



This algebraic representation is very difficult for MCMC, but produces great results.

## Coloured Continuum Triangulation



$$
X=\bigcup_{i=0}^{\infty}\{[0,1] \times[0,1]\}^{i}, \text { coloured }
$$

Nicholls 1998 Bayesian image analysis with Markov chain Monte Carlo and colored continuum triangulation models JRSSB

## Neolithic hill fort (Maori pa)


A) data, 1746 resistivity readings, (B) posterior mean resistivity, (C) posterior edge length density, (D1-3) samples from posterior

## Marked Point Process



Fahimah Al-Awadhi, Christopher Jennison, Merrilee Hurn 2004 JRSSC (Appl. Statist.)

## Computing lab today : count good/bad cells



## More Exciting State Spaces



Josiane Zerubia, Xavier Descombes, C. Lacoste, M. Ortner, R. Stoica (2000, 2003)

## U.N. voting patterns 1990 - 2006


thanks to David Bryant

## Electrical capacitance tomography



- Measure inter-electrode capacitances (1 fF to 5 pF )

$$
\mathbf{q}=C \mathbf{v}
$$

- Non-invasively image permittivity $\varepsilon$
- Primarily interested in (2-dim) area of inclusion


## ECT measurement system



Assert $N_{\mathrm{M}}$ potential vectors $\mathbf{v}^{m}=\left\{v_{1}^{m}, v_{2}^{m}, \ldots, v_{N_{\mathrm{E}}}^{m}\right\}^{\top}$, for $m=1,2, \ldots, N_{\mathrm{M}}$ Resulting potential fields denoted $u^{m}$
Measure vector of (displacement) charges is $\mathbf{q}^{m}=\left\{q_{1}^{m}, q_{2}^{m}, \ldots, q_{N_{\mathrm{E}}}^{m}\right\}^{\top}$ $\mathbf{q}^{m}$ is a linear function of $\mathbf{v}^{m}$, hence

$$
\mathbf{q}=C \mathbf{v}
$$

where $C$ is the $N_{\mathrm{E}} \times N_{\mathrm{E}}$ matrix of trans-capacitances.

## Forward map $G$

## ECT

## EIT

$$
\begin{gathered}
\nabla \cdot(\varepsilon \nabla u)=0 \quad \text { in } \Omega \cup \Omega_{\mathrm{E}} \\
\left.u\right|_{\partial \Omega_{k}}=v_{k} \quad k=1,2, \ldots, N_{\mathrm{E}}, S
\end{gathered}
$$

Measured charge related to fields by

$$
q_{k}=\int_{\partial \Omega_{k}} \varepsilon \nabla u \cdot \mathbf{n} d l, \quad k=1,2, \ldots, N_{\mathrm{E}}
$$

$$
\begin{array}{r}
\nabla \cdot \sigma \nabla u=0 \quad \text { in } \Omega \\
\int_{e_{l}} \sigma \frac{\partial u}{\partial n} d S=I_{l} \\
\left.\sigma \frac{\partial u}{\partial n}\right|_{\partial \Omega \backslash \cup_{l} e_{l}}=0 \\
\left.\left(u+z_{l} \sigma \frac{\partial u}{\partial n}\right)\right|_{e_{l}}=U_{l}
\end{array}
$$

Data simulation requires $N_{\mathrm{M}} \sim 16$ solves of the Dirichlet (Neumann) BVP. SNR of 1:1000 provides 105 measurements +5 per factor of 10 (further measurements give $\sqrt{n}$ noise improvement). Correlation $=1-0$.

Big names (Ohm, Kirchhoff, Laplace, Maxwell), but the biggest source of error!

$$
\pi(\varepsilon \mid \mathbf{q}) \approx \pi_{\mathrm{n}}(\mathbf{q}-G(\varepsilon)) \pi_{\mathrm{pr}}(\varepsilon)
$$

## FEM Mesh for ECT


.

## Represent boundary by implicit RBF (or polygon)

Represent boundary by $N$ point implicit RBF $x$
Naive prior uniform in node position: $\pi_{\mathrm{pr}}(x)=I$ (allowable contour)
For large area $\pi_{\mathrm{pr}}($ area $) \propto(\text { area })^{-1 / 2}$


Specify a prior explicitly in terms of area $\Gamma(x)$ and circumference $c(x)$

$$
\pi(x) \propto \exp \left\{-\frac{1}{2 \sigma_{\mathrm{pr}}^{2}}\left(\frac{c(x)}{2 \sqrt{\Gamma(x) \pi}}-1\right)\right\} I(x)
$$

## Posterior estimates (measured data)



| Quantities | true values | mean | standard deviation | IACT |
| :--- | :--- | :--- | :--- | :--- |
| $x$-coordinate of center $[\mathrm{m}]$ | - | $3.71 \times 10^{-2}$ | $2.32 \times 10^{-5}$ | $5.89 \times 10^{2}$ |
| $y$-coordinate of center $[\mathrm{m}]$ | - | $-1.14 \times 10^{-2}$ | $3.02 \times 10^{-5}$ | $4.65 \times 10^{2}$ |
| Area $\Gamma\left[\mathrm{m}^{2}\right]$ | $3.14 \times 10^{-4}$ | $3.13 \times 10^{-4}$ | $6.88 \times 10^{-6}$ | $1.10 \times 10^{3}$ |
| Circumference c $[\mathrm{m}]$ | $6.28 \times 10^{-2}$ | $6.24 \times 10^{-2}$ | $1.57 \times 10^{-4}$ | $1.88 \times 10^{3}$ |
| Log-likelihood | - | -46.10 | $1.72 \times 10^{-1}$ | $3.99 \times 10^{2}$ |


[^0]:    Representation of knowledge in complex systems, Grenander \& Miller JRSSB 1994

