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1 Introduction

Let’s start of with some examples in which Monte Carlo methods are being used.

1. Image restoration:

Consider a binary (black-and-white) image x with 128× 128 pixels, that is x is

a 1282 long array with entries xi ∈ {0, 1}, i ∈ {1, . . . , 1282}. We receive y,

a noisy version of x corrupted by multiplicative noise: the value at each pixel

is flipped with probability p independent of any other pixel. Further, we know

how binary pixel images tend to look like: reasonably large clusters of white or

black pixels. Monte Carlo methods can be used to estimate the true image x.

For example, we can determine the mode of the posterior distribution, that is the

image x̂ for which the noisy observation x is most likely.

2. Image interpretation:

Image restoration is a low-level task, but often we are interested in high-level

information such as characterisation of the objects visible in an image. For ex-

ample, consider the image below which shows vascular structure in a retina. Re-

searchers at Warwick used Monte Carlo methods to extract the vascular structure

and quantify the uncertainty associated with this extraction.
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3. Bioinformatics:

Genome sequencing projects produce sequences of letters from the 4-letter al-

phabet A,T, C and G (the so-called nucleotides). But how do we interpret these

sequences? Because of the sheer amount of data but also because of the vast

subject knowledge, sophisticated methods that incorporate this knowledge are

needed to analyze these sequences. For example, of interest are common pat-

tern or “words” of a certain length w in multiple sequences. These can give use

clues about functionality such as gene regulation. However, we don’t know the

exact location of these words and, worse, the words may contain “typos” due to

mutation!

4. Bayesian Statistics:

Suppose we have a likelihood model f(y|θ) and a prior density π(θ), then the

posterior density is given by

π(θ|y) ∝ f(y|θ)π(θ).

However, it may be difficult to compute the appopriate normalizing constant

of the posterior density. In this module we discuss simulation methods that can

sample from the posterior model without explicit computation of the normalizing

constant.

2 Foundations of stochastic simulation

2.1 Monte Carlo inference

Suppose we would like to compute the probability of winning Minesweeper using a

pre-specified play strategy. To do this analytically we would have to enumerate all

possible ways of planting bombs in a given grid. Given an n×n-grid and k bombs that

would make (n2)!/k!(n2−k)! configurations! Then for all possible starting conditions

we would have to determine which of these bomb configurations would lead to winning

or losing the game if we adopt the given strategy. Sounds like a lot of work, doesn’t it?

And it gets worse as the grid gets bigger!

Well, a savvy statistician would adopt the following approach. Instead of looking

at all possible bomb configurations, he would randomly choose some configurations

and then estimate the winning probability. In more detail, he would choose some large
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number N (which would still be smaller than all possible bomb configurations) and

then would sample N bomb configurations X1, . . . , XN and determine which would

lead to a loss and which to a win. He then would estimate the probability of winning

as p̂ = W/N where W is the number of games that were won. How would he sample

the bomb configurations? Well, he could repeatedly call the minesweeper program or

write a computer program to do so.

In this first section of the module we will learn a bit about techniques for sampling

standard distributions. But before we do this, let’s first look at the scientific method

called ”Monte Carlo estimation”. Most numerical problems fall into one of two cate-

gories:

1. optimisation, or

2. integration.

In this module we will focus mainly on the latter as statistical inference is usually

related to integration. Just recall that both expectations and probabilities are derived

from integrals (or sums)! So consider the following integral

I =

∫ 1

0

h(x)dx

How would you solve this problem numerically without resorting to simulation meth-

ods? Well, one approach would be Riemann summation. We evaluate the function

h(x) at n points (x(1), . . . , x(n)) in a regular grid and then compute

I ≈ 1

n

n
∑

i=1

h(x(i)).

Monte Carlo estimation proceeds differently. We start by re-writing the integral as

I =

∫ 1

0

h(x)

f(x)
f(x)dx

where f(x) is a density on [0, 1] such that if h(x) 6= 0 then f(x) > 0. But this means

that

I = Ef (h(X)/f(X)),

where Ef stands for expectation with respect to the distribution specified by f . We now

produce an iid sample (x(1), . . . , x(n)) from the distribution specified by the density f
and set

În =
1

n

n
∑

i=1

h(x(i))/f(x(i)).

The law of large numbers tells us that În converges with probability 1 to the integral I
as n tends to infinity. Moreover, the Central Limit Theorem states that

(În − I)/

√

Var(În)
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is approximately Standard Normal. So the variance Var(În) tell us about the accuracy

of our estimate and it can be estimated as

vn =
1

n(n− 1)

n
∑

j=1

(h(xj)/f(xj)− În)
2

2.2 Basic principles

2.2.1 Random numbers

Starting point of any stochastic simulation is a random number generator. Random

number generators start with some initial value x0, the so-called seed, and repeatedly

apply a deterministic function f to it to obtain a sequence xi = f i(x0), i = 1, 2, . . ..
This sequence cannot be truly ”random” because it is produced by a deterministic func-

tion. However, it imitates the behaviour of a sample from a Uniform(0,1) random vari-

able in the following sense. Consider the sequence (x1, . . . , xn) ∈ (0, 1) and apply a

statistical test for the departure from independence and/or the uniform distribution.

Definition 1 The sequence (x1, . . . , xn) is called a sequence of (pseudo-) random

numbers if statistical tests for the departure from independence and the uniform distri-

bution are not rejected more often than expected by chance.

There is vast literature about the use and misuse of random numbers as well as a mul-

titude of different random number generators. In the following we assume we have a

“good” random number generator available.

2.2.2 Inverse Transformation method

Theorem 1 Consider the cumulative distribution function (cdf) F (x). Let F−1 be the

generalized inverse of F , that is

F−1(u) = min{x ∈ S : F (x) ≥ u} u ∈ (0, 1]

Let U be a Uniform(0,1) random variable and set X = F−1(U), then the distribution

of X has cdf F (x).
(Note that for a continuous cdf the generalized inverse is just the usual inverse).

Sketch Proof: By the definition of the generalized inverse and monotonicity of F we

have

P (X ≤ x) = P(F−1(U) ≤ x) = P (U ≤ F (x)) = F (x).

Example 1 Simulating an Exponential random variable with parameter λ
An Exponential(λ) distributed random variable has cdf

F (x) = 1− exp(−λx) for x ≥ 0.
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Let U ∼ Uniform(0, 1) and set

Y = − 1

λ
log(1− U).

Then Y has an Exponential distribution with parameter λ. This can be further simpli-

fied by noting that 1− U is also Uniform(0,1) and so

Y = − 1

λ
log(U)

has an Exponential(λ) distribution.

Example 2 Bernoulli(p) trial and Binomial B(n, p) random variable

Let U be a Uniform(0,1) random variable. If we set

X =

{

1 if U < p
0 otherwise

then X is a Bernoulli trial with success probability p.

Let X1, . . . , Xn be an iid sample of Bernoulli(p) trials, then Y =
∑n

i=1 Xi has a

Binomial(n, p) distribution.

Example 3 Geometric(p) random variable

Suppose X takes values in N and P(X = j) = pj . Then

F−1(u) = min{j ∈ N : u ≤
j
∑

i=1

pi}.

Now, if X ∼ Geometric(p), then P(X > j) = (1− p)j . Thus,

j
∑

i=1

pi = 1− (1− p)j ≥ u

if and only if

j ≥ log(1− u)

log(1− p)

Let [a] denote the ceiling of a, then X =
[

log(U)
log(1−p)

]

has a Geometric(p) distribution.

2.2.3 Rejection sampling

Suppose we would like to sample X which is a continuous random variable with den-

sity function f(x). We do not know how to sample from X but we do know how to

sample from a similar random variable Y with density function g(y). If we have that

support(f ) ⊆ support(g) and that

f(x)/g(x) ≤ M for all x

then we can use sampling from Y to produce a sample from X . We repeat the following

steps until a sample is returned.
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• Step 1: Sample Y = y from g(x) and U = u from a Uniform(0,1) distribution.

Go to Step 2.

• Step 2: If u ≤ f(y)
M g(y) return X = y. Otherwise repeat Step 1.

Proposition 1 The distribution of the random variable X sampled in the above rejec-

tion sampling algorithm has density f(x).

Sketch Proof: We have

P(X ≤ x) = P

(

Y ≤ x | U ≤ f(Y )

Mg(Y )

)

=
P
(

Y ≤ x, U ≤ f(Y )
Mg(Y )

)

P

(

U ≤ f(Y )
Mg(Y )

) .

To compute the above we need the joint density of Y and U . By independence this is

h(y, u) = g(y) 1[0≤u≤1].

Thus,

P

(

Y ≤ x, U ≤ f(Y )

Mg(Y )

)

=

∫ x

−∞
g(y)

∫ f(y)/Mg(y)

0

1dudy

=

∫ x

−∞
g(y)

f(y)

Mg(y)
dy =

1

M

∫ x

−∞
f(y)dy

It follows that

P

(

U ≤ f(Y )

Mg(Y )

)

=
1

M

∫ ∞

−∞
f(y)dy =

1

M

and so our claim follows as

P(X ≤ x) =
P
(

Y ≤ x, U ≤ f(Y )
Mg(Y )

)

P

(

U ≤ f(Y )
Mg(Y )

) =

∫ x

−∞
f(y)dy.

How many iterations of the algorithm do we need on average? Well, in each iteration

we produce a sample with probability P(U ≤ f(Y )
Mg(Y ) ) = 1

M so the total number of

iterations is Geometrically distributed with parameter 1/M . Thus the mean number of

iterations needed is M . Note the following:

1. The smaller the bound M the more efficient the algorithm in terms of number of

iterations. Thus we should look for a density g close to f .

2. If the support of f is unbounded, then in order to be able to find a bound M the

density g needs to have fatter tails than f .
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Example 4 Suppose we would like to sample |X| where X is a standard Normal ran-

dom variable. The density of |X| is given by

f(x) =

√

2

π
exp

(

− x2

2

)

for x ∈ R
+.

We already know how to sample an Exponential random variable so let us choose as

density g the density of an Exponential distribution with parameter 1. Then

f(x)

g(x)
=

√

2

π
exp

(

− x2 − 2x

2

)

=

√

2e

π
exp

(

− (x− 1)2

2

)

≤
√

2e

π
.

So we set M =
√

2e
π and hence

f(x)

Mg(x)
= exp

(

− (x− 1)2

2

)

.

So the rejection sampling algorithm proceeds as follows:

• Step 1: Sample Y = y from an Exponential(1) distribution and U = u from a

Uniform(0,1) distribution. Go to Step 2.

• Step 2: If u ≤ exp(− (y−1)2

2 ) return X = y. Otherwise repeat Step 1.

Example 5 Consider a random variable Y with density g(x) defined on state space

S. Now suppose A ⊂ S and we would like to sample the conditional random variable

X = (Y |Y ∈ A) with state space A. In this case rejection sampling can be done

by repeatedly sampling X until our sample lies in A. More formally, X has density

f(x) = g(x)
P(Y ∈A) for x ∈ A. Thus

f(x)

g(x)
≤ 1

P(Y ∈ A)
= M and

f(x)

Mg(x)
= 1[x∈A] for x ∈ S,

Suppose now U is uniformly distributed on the unit interval. Then

P(U ≤ f(Y )/Mg(Y )) =

{

1 if Y ∈ A
0 if Y /∈ A

Thus in the standard rejection sampling algorithm, we accept if Y ∈ A and otherwise

we reject. We don’t need to sample U to make this decision.

If the evaluation of the target density f is very expensive, rejection sampling can

be made computationally less expensive if additional to the upper bound Mg(x) on the

target density f(x) we also have an easily evaluated lower bound h(x). The so-called

envelope rejection sampling algorithm proceeds as follows.
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1. Sample Y = y from g(y) and U = u from a Uniform(0,1) distribution.

2. Accept if u ≤ h(y)/Mg(y) and return X = y as a sample. Otherwise go to Step

3.

3. Accept if u ≤ f(y)/Mg(y) and return X = y as a sample. Otherwise go to Step

1.

This is more efficient because on average we need 1/M
∫

h(x)dx times less evalua-

tions of f which are replaced by evaluations of h. The function h can be found for

example by a Taylor expansion.

3 Importance sampling

In the previous section we encountered rejection sampling where we use a proposal

density to produce samples from the target density. In this section we retain the samples

of the proposal density but alter the estimation procedure to get unbiased estimates of

the characteristics of the target density.

3.1 Standard importance sampling

Recall what we said when we discussed Monte Carlo inference! We are interested in

the integral

I = Ef (h(X)) =

∫

S

h(x)f(x)dx

where f is a density. Then we re-write the integral as

I =

∫

S

f(x)

g(x)
h(x)g(x)dx

where g is a density such that g(x) > 0 whenever f(x)h(x) 6= 0. We now produce an

iid sample (x1, . . . , xn) from g and estimate I as

Î =
1

n

n
∑

i=1

f(xi)

g(xi)
h(xi) =

1

n

n
∑

i=1

w(xi)h(xi).

We call this procedure importance sampling. The density g is called the proposal or

instrumental density and the weights w(xi) = f(xi)
g(xi)

are called importance weights.

Note that Î is an unbiased estimator of I .

There are two reasons why we might be interested in performing importance sam-

pling:

1. sampling from f(x) is not possible or too expensive;

2. h(X), where X ∼ f , has a large variance, so the conventional unbiased estima-

tor has large Monte Carlo error.
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The variance of an importance estimator will only be finite if the estimator is square

integrable, that is

Eg

(

h2(X)
f2(X)

g2(X)

)

= Ef

(

h2(X)
f(X)

g(X)

)

< ∞

Thus the variance will often be infinite if the ratio f(x)/g(x) is unbounded. Hence, if

possible, we should choose a proposal density g that has thicker tails than f . Generally,

if f(x)/g(x) is unbounded, then even if the variance of the estimator is finite, the

procedure is inefficient as the variance of importance weights is large. The importance

weights of the sample will vary widely giving much relative weight to a few sample

values.

Example 6 Normal tail probabilities

Let p = P(Z > 4) where Z is a standard Normal random variable. Using a naive

approach we might produce an iid standard Normal sample Z(1), . . . , Z(M) and set

p̂ =
1

M

M
∑

i=1

1[Z(i)>4]

However, M would have to be VERY large to get an estimate that differs from zero. An

alternative is to produce an iid sample from an Exponential random variable of rate 1

translated to the right by 4. Then

w(x) =
f(x)

g(x)
=

1√
2π

exp(−1

2
x2 + (x− 4)).

Instead of the importance estimator Î = 1
n

∑n
i=1 w(xi)h(xi) the following ratio

estimator is often used:

Ĩ =

∑n
j=1 h(xj)w(xj)
∑n

j=1 w(xj)
.

This estimator has two advantages:

1. While it is biased, it usually has a smaller variance than the importance estimator

introduced earlier. But note that this estimator is still consistent as for x1, . . . , xn

iid with density g we have

1

n

n
∑

j=1

f(xj)/g(xj)
n−→∞→ 1.

2. We can apply importance sampling even if we know f(x) and thus w(x) only up

to a constant of proportionality.

If we cannot find an importance density that leads to a reasonably small variance

of importance weights there are several procedures that may be adopted to reduce the

variance.
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1. The first approach is called sequential importance resampling and proceeds as

follows.

(a) Produce an importance sample Y (1), . . . , Y (n) with importance weights

wi = f(Y (i))/g(Y (i)), i = 1, . . . , n.

(b) Produce a new sample X(1), . . . , X(n) by sampling from Y (1), . . . , Y (n)

where Y (j) is sampled with probability wj/
∑n

i=1 wi.

2. The second procedure is called rejection control and considers discarding any

sample points that have an importance weight below a given threshold c. Dis-

carding sample points will introduce a bias, but by changing the importance

weights appropriately this bias can be avoided. Given the importance sample

Y (1), . . . , Y (n) with importance weights w1, . . . , wn rejection control proceeds

as follows:

(a) For j = 1, . . . , n accept Y (j) with probability pj = min{1, wj/c}. Other-

wise discard Y (j).

(b) If Y (j) is accepted recompute its importance weight as w̃j = qwj/pj where

q =
∫

min{1, w(x)/c}g(x)dx.

Note that because q is the same for all sample points, we do not need to compute

it explicitly if we use the ratio estimator. Further note that rejection control

produces an importance sample according to the proposal density

g∗(x) =
min{g(x), f(x)/c}

q
.

4 Markov chain theory

In this section we review some of the concepts in Markov chain theory which are

important for MCMC. Let us start with the basics and first define a Markov chain.

Definition 2 Markov chain. A random process X = {Xn, n = 0, 1, 2, . . .} taking

values in S is a Markov chain, if

P

(

Xn+1 ∈ A | Xn = xn, Xn−1 = xn−1, . . . , X0 = x0

)

= P

(

Xn+1 ∈ A | Xn = xn

)

for all n ≥ 0, A ⊆ S and x0, . . . , xn ∈ S .

Thus, given we know the present value of the chain (at time n), the value the chain

takes in the future (at time n+1) does not depend on values in the past (at times before

n).
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Example 7 Weather. Suppose Xn is the weather on day n. We set

Xn =







0 if it is sunny on day n
1 if it is cloudy on day n
2 if it rains on day n.

The figure below shows the transition probabilities for the weather chain.

By modelling the weather as a Markov chain, we assume that the weather tomorrow

given the weather today does not depend on the weather of yesterday or any earlier day.

In this course we mostly consider time-homogeneous Markov chains, that is Markov

chains whose transition probabilities do not depend on the time.

Definition 3 Transition probabilities, time-homogeneity. A Markov chain X is

time-homogeneous, if its transition probabilities

P

(

Xn+1 ∈ A | Xn = x
)

= P (x,A) =

∫

A

p(x, y)dy

do not depend on n. We call P (x,A) the transition kernel. Within this module we

assume that the transition kernel is absolutely continuous for every x ∈ S that is,

it has an associated density or probability mass function. Thus for fixed x ∈ S the

function p(x, y) is a density (or pmf). To ease terminology in the following we will

refer to p(x, y) as a density, but keep in mind that on a discrete state space it would be

a probability mass function.

The n-step transition densities p(n)(x, y) of X are defined as

P

(

Xn ∈ A | X0 = x
)

= Pn(x,A) =

∫

A

p(n)(x, y)dy

In the weather example, if we assume that the Markov chain is time-homogeneous

then we assume that changes in the weather do not depend on the current month. This

may not be very sensible as the weather behaves differently in different seasons. How-

ever, we make this common assumption because time-homogeneous Markov chains

are much easier to deal with.

If the state space S of X is finite, then we can collect the transition probabilities in

a transition matrix.

Definition 4 Transition matrix. Let P(Xn+1 = j|Xn = i) = pij . Then the transition

matrix of X is given by

P = (pij)i,j∈S .
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Task 1 Determine the transition matrix for the weather chain.

The transition matrix for the weather Markov chain is

P =





0.4 0.6 0
0.25 0.25 0.5
0 0.4 0.6





The n-step transition probabilities can be computed from the transition matrix as

follows

p
(n)
ij = P

n(i, j).

Task 2 Compute the 2-step transition matrix for the weather chain.

P
2 =





0.31 0.39 0.3
0.1625 0.4125 0.425
0.1 0.34 0.56





Lemma 1 Distribution at time n. Suppose the initial distribution of X , that is the

distribution of X0 is given by the density q(0)(x). Then we can compute the density of

X at time n as follows

q(n)(x) =

∫

S
q(0)(y) p(n)(y, x)dy.

For a finite state space we may use matrix algebra to compute the distribution of X
at time n. If q(n) is the vector of the distribution at time n and P

n the n-step transition

matrix, then

q(n) = q(0) Pn.

Task 3 Suppose on day 0 it is sunny. Thus q(0) = (1, 0, 0). Then, the distribution of

the weather on the day 2 is

q(2) = q(0)P2

= (1, 0, 0)





0.31 0.39 0.3
0.1625 0.4125 0.425
0.1 0.34 0.56





= (0.31, 0.39, 0.3)

Thus, if on day 0 it is sunny, we have a 31% chance of having sunny weather on day 2.

If a Markov chain satisfies certain regularity conditions then the distribution of the

chain converges to a limit distribution which is also called the invariant, stationary or

equilibrium distribution. Such a chain is called an ergodic Markov chain.

Task 4 List possible reasons why a Markov chain may fail to be ergodic and thus will

not have a limit distribution.

1. Reducibility
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2. Periodicity

3. Transience.

A discrete time Markov chain on a discrete state space is ergodic, if it is irreducible,

aperiodic and positive recurrent. We first review these concepts for countable (discrete)

state spaces and then discuss the analogues for general state spaces.

Definition 5 Irreducibility

A Markov chain is irreducible if all states intercommunicate, that is for all i, j ∈ S
there is an n ≥ 0 such that

P

(

Xn = i | X0 = j
)

> 0.

Task 5 Are the following two Markov chains irreducible?

Definition 6 Recurrence

A Markov chain X is recurrent, if

P

(

X visits i eventually | X0 = i) = 1 for all i ∈ S.

Task 6 Which of the following Markov chains is recurrent?

Definition 7 Positive Recurrence

A recurrent chain is positive recurrent, if E(Tii) < ∞ for all i ∈ S , where Tii is

the time of the first return to state i. If the Markov chain is ergodic with stationary

distribution π, then

π(i) = 1/E(Tii).
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Definition 8 Aperiodicity

A Markov chain is aperiodic if there do not exist d ≥ 2 and disjoint subsets S1, . . . ,Sd ⊂
S such that

P (x,Si+1) = 1 for all x ∈ Si, i ∈ {1, . . . , d− 1}
P (x,S1) = 1 for all x ∈ Sd.

Task 7 Which of the following Markov chain is periodic and which aperiodic?

Remark 1 1. Recurrence and aperiodicity are class properties. If a Markov chain

is irreducible, then the whole state space is one communicating class. Thus an

irreducible chain is recurrent if one of its states is recurrent. The same is true for

positive recurrence and aperiodicity.

2. Irreducibility essentially ensures that the state space does not split into subsets

such that the chain cannot move from one subset to the other.

3. (Positive) Recurrence ensures that the chain eventually visits every subset of the

state space of positive mass (sufficiently often).

4. Perodicity causes the state space to split into subsets (cyclically moving sub-

classes) which are visited by the chain in sequential order.

Now let’s look at a continuous state space X . Because the probability of a contin-

uous random variable taking a fixed value is zero, we need to revise our concept of

irreducibility.

Definition 9 φ-irreducibility

A Markov chain is φ-irreducible if there exists a non-zero measure φ on X such that for

all A ⊆ X with φ(A) > 0 and for all x ∈ X , there exists a positive integer n = n(x)
such that

Pn(x,A) > 0.

For example, if φ(A) = δx0
(A) then this requires that the state x0 can be reached

from any other state with positive probability. Thus, irreducibility is a more stringent

condition than φ-irreducibility. For continuous state spaces, φ(·) might be the Lebesgue

measure.

The concept of aperiodicity as defined earlier also applies to continuous Markov

chains.

A Markov chain that is φ-irreducible and aperiodic has a limit distribution. To mea-

sure the distance between two probability measures we use the total variation distance:

14
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Definition 10 The total variation distance between two probability measures P1 and

P2 is defined as

||P1(·)− P2(·)|| = sup
A

|P1(A)− P2(A)|.

Theorem 2 Equilibrium distribution The distribution of an aperiodic, φ-irreducible

Markov chain converges to a limit distribution π, that is

lim
n→∞

||Pn(x, ·)− π(·)|| = 0 for π − almost all x ∈ X .

We call the limit distribution π the equilibrium distribution or the stationary distribu-

tion.

The above limit theorem holds for almost all starting values. To make it hold for all

starting values and thus for all initial distributions q(0) we need an additional property

of the Markov chain, the so-called Harris recurrence.

Definition 11 Harris recurrence: A Markov chain X is Harris recurrent if for all

B ⊆ X with π(B) > 0 and all x ∈ X we have

P (Xn ∈ B for some n > 0|X0 = x) = 1.

Theorem 3 The distribution of an aperiodic, Harris recurrent Markov chain converges

to a limit distribution π, that is

lim
n→∞

||Pn(x, ·)− π(·)|| = 0 for all x ∈ X .

Note that because

qn(A) = P(Xn ∈ A) =

∫

q(0)(x)Pn(x,A)dx

it follows that limn→∞ P(Xn ∈ A) = π(A) for all A ⊆ X and all initial distributions

q(0).

Standing Assumption: For the rest of these notes we assume that the Markov

chain X is ergodic. In practice this needs to be check for each individual case!

Because Theorem 3 holds for any initial distribution q(0) if we run an ergodic

Markov chain for a long time, then it settles down to a statistical equilibrium, regard-

less of its starting point. Furthermore, if we start a chain in equilibrium then it remains

in equilibrium. This can be easily shown using induction as follows. For n = 1

q(1)(x) =

∫

X
q(0)(y) p(y, x)dy =

∫

X
π(y) p(y, x)dy = π(x)

Now assume q(n)(·) = π(·), then

q(n+1)(x) =

∫

X
q(n)(y) p(y, x)dy =

∫

X
π(y) p(y, x)dy = π(x)
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Note that using the dominated convergence theorem we have

lim
n→∞

q(n+1)(x) = lim
n→∞

∫

S
q(n)(y) p(y, x)dy =

∫

S
lim
n→∞

q(n)(y) p(y, x)dy

It follows that

π(x) =

∫

S
π(y) p(y, x)dy.

We call the last equation the general balance equation. It shows that the transition

probabilities of X preserve the equilibrium. This means that once the chain is in equi-

librium it remains in equilibrium. That is why we call a distribution which satisfies the

general balance equation the invariant distribution of X . If X is ergodic, then we can

use the general balance equations to show that π is the equilibrium distribution for the

chain X . However, often it is difficult to find transition probabilities which solve the

equations given by general balance. Much easier are the detailed balance equations.

Lemma 2 Detailed balance. Suppose π is a distribution on S which satisfies

π(x) p(x, y) = π(y) p(y, x)

for all x, y ∈ S , where p(x, y) is the transition density/pmf of an ergodic Markov chain

X . Then π is the stationary distribution of X .

Proof:

The distribution π satisfies general balance because
∫

S
π(x)p(x, y)dx =

∫

S
π(y)p(y, x)dx = π(y)

∫

S
p(y, x)dx = π(y).

Note that detailed balance is not necessary for general balance! If detailed balance

holds, then the chain is time-reversible. This means in equilibrium the chain statisti-

cally behaves the same whether it is run forwards or backwards in time. However, there

are many ergodic Markov chains which are not time-reversible.

Example 8 Weather chain.

The weather chain has transition matrix:

P =





0.4 0.6 0
0.25 0.25 0.5
0 0.4 0.6





Its general balance equations are:

(π(0), π(1), π(2)) = (π(0), π(1), π(2))





0.4 0.6 0
0.25 0.25 0.5
0 0.4 0.6





π(0) = 0.4π(0) + 0.25π(1)

π(1) = 0.6π(0) + 0.25π(1) + 0.4π(2)

π(2) = 0.5π(1) + 0.6π(2)

⇒ π(0) =
5

12
π(1), π(2) =

5

4
π(1)
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Thus

1 = π(0) + π(1) + π(2) = (
5

12
+ 1 +

5

4
)π(1) =

8

3
π(1)

and so π(1) = 3
8 .

The detailed balance equations of the weather chain are:

π(0)p(0, 1) = π(1)p(1, 0) 0.6π(0) = 0.25π(1)

π(1)p(1, 2) = π(2)p(2, 1) 0.5π(1) = 0.4π(2)

⇒ π(0) =
5

12
π(1), π(2) =

5

4
π(1)

Example 9 Consider the Markov chain with the following state-flow diagram where

0 < p < 1.

The general balance equations of the chain are:

π(1) = qπ(1) + qπ(2)

π(2) = pπ(1) + qπ(3)

π(3) = pπ(2) + qπ(4)

π(4) = pπ(3) + pπ(4)

The detailed balance equations are given by

pπ(1) = qπ(2)

pπ(2) = qπ(3)

pπ(3) = qπ(4)

It follows that

π(2) =
p

q
π(1)

π(3) =
p

q
π(2) =

(p

q

)2

π(1)

π(4) =
p

q
π(3) =

(p

q

)3

π(1)

As 1 = π(1) + π(2) + π(3) + π(4) we have that

π(1) =
1− p

q

1− (pq )
4
.

Note that detailed balance equations are usually easier to solve than general balance

equations.
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The usefulness of MCMC is based on the following important theorem for ergodic

Markov chains.

Theorem 4 Ergodic theorem: Let h be some real function and X an ergodic Markov

chain with stationary distribution π. Consider the ergodic average

hN =
1

N

N
∑

n=1

h(Xn).

Now, suppose that Y has distribution π. If Eπ(|h(Y )|) < ∞ then, as N → ∞ the

ergodic average hN converges to Eπ(h(Y )) with probability one.

We also have a Central limit theorem. It requires a certain condition on the speed

of convergence known as geometric convergence. We use the same notation as in the

previous theorem.

Theorem 5 Central Limit Theorem:

If X is geometrically ergodic and Eπ

(

h(Y )2+ǫ
)

< ∞ for some ǫ > 0 then

ĥN
D−→ N

(

Eπ(h(X)),
τ2

N

)

Here the convergence is convergence in distribution. The term τ2 is related to the in-

tegrated autocorrelation time of X , which quantifies how accurated estimates derived

from the MCMC sample will be.

In the following chapter we see how we can construct a Markov chain whose equi-

librium distribution is the target distribution given by π.

5 Markov chain Monte Carlo

5.1 Introduction

Let’s recap from the last section. The ergodic theorem is a law of large numbers and we

can exploit it as follows. Suppose we would like to know the expectation of the random

variable h(Y ) where Y has the distribution given by the density (pmf) π. However, we

cannot compute E(h(Y )) =
∫

h(y) π(y)dy. Fortunately, we can construct an ergodic

Markov chain X whose stationary distribution has density π. Then we run X up to

some large time N and estimate E(h(Y )) by 1
N

∑N
n=1 h(Xn). The ergodic theorem

tells us that for sufficiently large N , our estimate will be close to E(h(Y )). This is the

main idea behind MCMC.

So we start with a distribution π and then try to find an ergodic Markov chain

whose stationary distribution is π. For any given distribution there are usually many

Markov chains which are suitable. Thus there is a variety of ways in which to construct

a Markov chain whose distribution converges to the target distribution.

It is actually not very difficult to find a Markov chain whose invariant distribution

is the desired distribution. There is a set of methods, so-called “samplers”, which we
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can use to define such a Markov chain. If the constructed chain is ergodic then we

can proceed by simulating that chain and estimating the quantities of interest. In the

following two sections we will learn about the two most common samplers.

5.2 Metropolis-Hastings Sampler

Let S be the state space of the target distribution. The transitions of a Metropolis-

Hastings chain are produced as follows. First, we choose for each x ∈ S a density

q(x, ·) on S (or a pmf if S is discrete). Thus q(x, ·), x ∈ S , specify the transition

probabilities/densities of a Markov chain on the state space S given the current state is

x. These transition probabilities/densities q(x, ·) should be such that they are relatively

easy to sample.

Now suppose the current state of our Markov chain is Xn = x. Then we sample a

state z according to q(x, ·). We propose this state z as the new state of the chain and

accept it with probability

α(x, z) = min
{

1,
π(z) q(z, x)

π(x) q(x, z)

}

.

If the proposed state z is accepted then the Markov chain moves to z, that is Xn+1 = z.

Otherwise the chain remains in x, that is Xn+1 = x. We summarize this procedure in

the following definition.

Definition 12 Metropolis-Hastings Sampler: Choose transition probabilities/densities

q(x, y), x, y ∈ S . These define the proposal distributions. Now suppose Xn = x ∈ S .

Proceed as follows:

1. Sample Z = z from q(x, z), z ∈ S .

2. Accept Z = z with probability

α(x, z) = min
{

1,
π(z) q(z, x)

π(x) q(x, z)

}

.

If Z = z is accepted set Xn+1 = z. If Z = z is not accepted set Xn+1 = x.

Let us look at some examples. The first example is about a mixture distribution. Con-

tinuous mixture distributions with two components have densities of the form

f(x) = pf1(x) + (1− p)f2(x)

where 0 < p < 1 and fi(x) is a density. We can sample mixtures by sampling x
from f1(·) with probability p and from f2(·) with probability 1 − p. In the following

example we show how to sample from a mixture distribution using the Metropolis-

Hastings sampler. The density in the example could be sampled directly but we discuss

the example here as we will later use it to discuss some implementational issues.

Example 10 Bimodal Normal mixture distribution:

19

Downloaded by Colin Fox (colinfox373@gmail.com)

lOMoARcPSD|3708389

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=st911-2012-2013-notes-part-iii


• The target density is

π(x) = p
1

√

2πσ2
1

exp(− 1

2σ2
1

(x−µ1)
2)+(1−p)

1
√

2πσ2
2

exp(− 1

2σ2
2

(x−µ2)
2)

where 0 < p < 1. The figure below shows the density above for σ1 = σ2 = 1,

µ1 = 4, µ2 = −4 and p = 0.8.

• The proposal density:

We sample w from a standard Normal density and propose z = x + w as our

new state. Thus z ∼ N (x, 1) and our proposal density is

q(x, z) =
1√
2π

exp
(

− 1

2
(z − x)2

)

.

• The acceptance probability:

α(x, z) = min
{

1,
π(z)q(z, x)

π(x)q(x, z)

}

= min
{

1,
π(z) 1√

2π
exp(− 1

2 (x− z)2)

π(x) 1√
2π

exp(− 1
2 (z − x)2)

}

= min
{

1,
π(z)

π(x)

}

• The Metropolis-Hastings sampler proceeds as follows:

1. Choose X0 = x0 ∈ R.

2. Suppose Xn = x. Sample z ∼ N (0, 1) and set y = x + z. Accept y with

probability min{1, π(y)
π(x)}. If accepted set Xn+1 = y, else set Xn+1 = x.

Example 11 Points on a unit circle: (adapted from Ross, 2002)

Suppose x = {x(1), . . . , x(m)} are the positions of m points on the unit circle. Let

π(x(1), . . . , x(m)) be the density that distributes the m points iid uniformly on the cir-

cle conditional on no points being within distance d of each other. (Distributions of

this type often occur in chemical settings where the points are centres of spherical

molecules of diameter d). Let A be the event that the minimum distance between m
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points iid uniformly distributed on the unit circle is greater than d and set p = P(A).
Let S be the space of any configuration of m points in (0, 2π) such that the mimimum

distance between points is greater than d. Then our target distribution is

π(x) =
1

2πp
1[x∈S].

In one dimension we are just about able to compute p, but already in 2 dimensions

this becomes infeasible. So similar to the previous example we have a simple form for

the target distribution but we do not have a closed form expression for its normalizing

constant.

Let’s think about an easy way of moving from one x ∈ S to another x′ ∈ S .

One way is to choose a point x ∈ x at random and delete it and then sample a new

location z uniformly in (0, 2π) and setting x′ = x ∪ {z}\{x}. (This may produce a

configuration x′ that does not lie in S but, as we will see later on, this does not really

matter.) This approach is described by the transition density

q(x, x′) =
1

2πm
1[z∈(0,1)] where x′ = x ∪ {z}\x.

Then for x ∈ S and x′ = x ∪ {z}\{x} we have

α(x, x′) = min
{

1,
π(x′)q(x′, x)
π(x)q(x, x′)

}

= min
{

1,
1[x′∈S]1[x∈(0,2π)]

1[x∈S]1[z∈(0,2π)]

}

=

{

1 if x′ ∈ S
0 otherwise

Thus as long as we start in S any state that we move to will also lie in S! In summary,

the Metropolis algorithm works as follows: Choose X0 ∈ S , for example by placing

the points successively a distance d + ǫ apart from each other (where ǫ is sufficiently

small). Now suppose Xn = x ∈ S . Proceed as follows:

1. Choose i ∈ {1, . . . ,m} at random and sample z uniformly on (0, 2π). Set z =
x ∪ {z}\{x(i)}.

2. If z ∈ S , then accept z and set Xn+1 = z. If z /∈ S , reject z and set Xn+1 = x.

Example 12 The Ising model describes a lattice which at each site has a small dipole

or spin which is directed upwards or downwards. Thus each site j may take a value

x(j) ∈ {−1, 1} representing a downward respectively an upward spin. The figure be-

low represents a configuration of an Ising model, where sites are displayed as circles.

If the site carries an upwards spin then it is filled in black. If, on the other hand, the

site has a downwards spin, it is filled in white. The spin at each site is influenced by

the spins of its neighbour sites. The figure below shows a possible choice of neigh-

bourhood. This particular choice is called a 4-neighbourhood with periodic boundary

conditions. The ferro-magnetic Ising model gives a high probability to spin configu-

rations in which many neighbouring sites have the same spin. Physicist tend to speak
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of energies rather than probabilities. A state that has small energy is easy to maintain

and thus has a high probability. The energy function of a simple ferro-magnetic Ising

model is given by

H(x) = −β
∑

(i,j)∈E
x(i)x(j).

Here x is a spin configuration on a lattice. Assuming the lattice has m sites, then

x = (x(1), . . . , x(m)) is an m-dimensional vector of 1’s and -1’s. Let “i ∼ j” mean

that site i is a neighbour of site j then we are summing over E = {(i, j) : i ∼ j} the

set of all site pairs that are neighbours of each other. The constant β is positive for

the ferro-magnetic Ising model. (If β is negative, then we call it the anti-ferromagnetic

Ising model.) Based on the energy function H we can now define the probability mass

function:

π(x) =
1

Z
exp(−H(x)).

We call Z the partition function, but it is nothing else but the inverse of the normal-

izing constant of π.

A Metropolis-Hastings type algorithm can be used to sample (approximately) from an

Ising model. To determine a new state, we run through the sites in a sequential order

and propose to flip its spin. As an exercise, determine the proposal probabilities and

work out the acceptance probability! Here is a pseudo-code description of the algo-

rithm:

Initialize x
for t = 1 to N

for i = 1 to m
d = β

∑

j:i∼j x
(i)x(j)

U ∼ Uniform(0,1)

if log(U) < min{0,−2d} then

x(i) = −x(i)
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Note that the resulting chain (Xn)n∈N is no longer time-reversible (as we can spot

the order in which sites are updated from a realisation of the chain)! However, each

step satisfies detailed balance and what is more, the chain (X̃k)k∈N = (X|S|k)k∈N is

time-reversible.

Let’s look at some of the more theoretical properties of the Metropolis-Hastings

algorithm. First notice, that there is a lot of freedom in how you choose the proposal

mechanism q(x, y). A priori, the only necessary condition is that the support of the

target density π is a subset of the support of the appropriate proposal densities. More

precisely, we need

S = support(π) ⊆
⋃

x∈S
support(q(x, ·)).

You may have noticed in the preceding examples that the acceptance probability

α(x, y) is based on ratios of π(·), thus we do not need to know the normalizing con-

stant of π(·) to be able to compute this probability. You may also have noticed that

the acceptance probability contains terms that are similar to the terms in the detailed

balance equations. This is no coincidence, the acceptance probability is chosen such

that detailed balance holds! Thus if the resulting chain is ergodic then it has π(·) as

stationary distribution. Let us have a look at the detailed balance equations of the

Metropolis-Hastings chain. For this, we first need to determine the transition kernel of

the MH-chain.

Lemma 3 The transition kernel p(x, y) for the Metropolis-Hastings sampler is given

by

p(x, y) = q(x, y)α(x, y) + 1[x=y]r(x).

where

r(x) =







∑

y∈S q(x, y)
(

1− α(x, y)
)

if S is discrete
∫

S q(x, y)
(

1− α(x, y)
)

dy if S is continuous

(Note that this transition kernel is not continuous with respect to the Lebesgue mea-

sure.)

Proof: Suppose S is discrete. Recall that the chain moves to a new state y if this state

was proposed and accepted. This happens with probability q(x, y)α(x, y). This is the

probability of going from x to y when y 6= x. Now consider the probability of going

from x to x. This can happen in two ways. Firstly we may propose x as the new state

and then accept it, which happens with probability q(x, x)α(x, x). Secondly, we may

propose some state y and reject it, in which case the chain remains in x. This occurs

with probability

r(x) =
∑

y∈S
q(x, y)

(

1− α(x, y)
)

.

Thus, in summary, the transition probabilities of the Metropolis-Hastings chain are

given by

p(x, y) = q(x, y)α(x, y) + 1[x=y]r(x).
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The proof for continuous S follows analogously.

We are now in a position to check the detailed balance equations.

Lemma 4 The Metropolis-Hastings chain satisfies detailed balance with respect to π.

Proof: For x 6= y we have

π(x)p(x, y) = π(x)q(x, y)α(x, y)

= min
{

π(x)q(x, y), π(y)q(y, x)
}

= π(y)q(y, x)min
{π(x)q(x, y)

π(y)q(y, x)
, 1
}

= π(y)p(y, x).

Detailed balance holds trivially for x = y and so our claim follows.

5.3 Proposal distributions

Metropolis-Hastings Samplers are often classified according to their proposal distribu-

tions.

1. Gibbs Sampler

The Gibbs Sampler is a popular choice that uses full conditional distributions as

proposal distributions. Let xt = (x
(1)
t , . . . , x

(d)
t ) and

x
(−i)
t = (x(1), . . . , x(i−1), x(i+1), . . . , x(d)).

We choose a component i ∈ {1, . . . , d} and propose as a new state

z = (x(1), . . . , x(i−1), y, x(i+1), . . . , x(d))

where y is sampled from the full conditional density

π(y|x(−i)
t ) =

π(z)
∫

π(x
(1)
t , . . . , x

(i−1)
t , w, x

(i+1)
t , . . . , x

(d)
t )dw

.

One can show that for this choice of proposal distribution the acceptance prob-

ability is equal to one. If the full conditional distributions are standard and thus

easily sampled then the Gibbs sampler is a very popular choice. We will devote

a whole section on the Gibbs sampler, but for now we look at a simple example.

Example 13 Bivariate Normal distribution

This is just a toy example as we can sample bivariate normal distributions di-

rectly. But it illustrates well how the Gibbs Sampler works. We would like to

sample X and Y which have joint density

π(x, y) =
1

2π
√

1− ρ2
exp

(

− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

)
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This density specifies a bivariate Normal distribution with mean (0,0) and co-

variance matrix

Σ =

(

1 ρ
ρ 1

)

As an exercise show that (X|Y = y) has distribution N (ρy, 1 − ρ2) and that

(Y |X = x) has distribution N (ρx, 1 − ρ2). In computer practical 5 you will

implement a sequential scan Gibbs Sampler that alternatingly updates the x-

coordinate and then the y-coordinate. Suppose Xn = (xn, yn) then we proceed

as follows. We first sample X = x from the conditional distribution of (X|Y =
yn). Then we sample Y = y from the conditional distribution of (Y |X = x) and

set Xn+1 = (x, y).

2. Independence Sampler

As the name suggests the independence sampler proposes states which are inde-

pendent of the current state of the chain, that is q(x, y) = f(y) for all x ∈ S ,

where f is a pmf or density. The acceptance probability for the independence

sampler reduces to

α(x, y) = min
{

1,
π(y)f(x)

π(x)f(y)

}

.

Note that this is just the ratio of importance weights w(y)/w(x) for target density

π and instrumental density f .

Example 14 Consider target density

π(x) =
1

π(1 + x2)
, x ∈ R.

If we use standard Normal proposals with zero mean and standard deviation 4,

then the proposal density is

q(x, y) ∝ exp(−y2/32),

and so the acceptance probability is given by

α(x, y) = min
{

1,
exp(−x2/32)(1 + x2)

exp(−y2/32)(1 + y2)

}

.

While the independence sampler may not work so well in practice its theoretical

properties are well understood (using tools from renewal theory). For example

we can show that an independence sampler is ergodic as long as the support of π
is a subset of the support of f .

The independence sampler is also very similar to rejection sampling. Let’s com-

pare the acceptance probability for rejection sampling with the expected accep-

tance probability of the independence sampler in stationarity. For rejection sam-

pling to apply we assume that π(x) ≤ Mf(x). Then if Y has distribution f and
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X has distribution π we have

E

(

min{1, π(Y )f(X)

π(X)f(Y )
}
)

=

∫ ∫

1[π(y)f(x)≥π(x)f(y)]π(x)f(y)dxdy

+

∫ ∫

π(y)f(x)

π(x)f(y)
1[π(y)f(x)<π(x)f(y)]π(x)f(y)dxdy

= 2

∫ ∫

1[π(y)/f(y)≥π(x)/f(x)]π(x)f(y)dxdy

≥ 2

∫ ∫

1[π(y)/f(y)≥π(x)/f(x)]π(x)
π(y)

M
dxdy

=
2

M
P(π(X1)/f(X1) ≥ π(X2)/f(X2)) =

1

M

where X1 and X2 are iid with distribution π. Thus, in stationarity, the acceptance

probability of an independence sampler is larger than the acceptance probability

of the rejection sampling algorithm. This of course comes at the expense of

producing a dependent sample with only asymptotically the correct distribution.

Similar to rejection sampling it makes sense to choose an independence sampler

whose proposal distribution f is as close as possible to the target π. (To see this

note that if f = π the chain immediately reaches stationarity.) In practice the

proposal distribution fθ usually depends on some parameter θ and we tune the

parameter empirically to get a good average acceptance rate. We may use trial

runs to estimate the expected acceptance rate.

If π(x) ≤ Mf(x) then we can even compute the rate of convergence of the

transition kernel to the stationary distribution as follows. For y 6= x:

p(x, y) = f(y)min
{π(y) f(x)

π(x) f(y)
, 1
}

= min
{π(y) f(x)

π(x)
, f(y)

}

≥ π(y)

M
(1)

||P (x, ·)− π|| = sup
A

|
∫

A

p(x, y)− π(y)dy|

=

∫

{y:π(y)>p(x,y)}
π(y)− p(x, y)dy

≤ (1− 1

M
)

∫

{y:π(y)>p(x,y)}
π(y)dy ≤ (1− 1

M
)

where the first inequality follows from equation (1). Now, analogously,
∫

A

p2(x, y)−π(y)dy =

∫

A

(

∫

A

p(u, y)−π(y)dy
)

(p(x, u)−π(u))du ≤ (1− 1

M
)2.

Using induction we can now show that

||Pn(x, ·)− π|| ≤ (1− 1

M
)n.
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The above means that the independence sampler is uniformly ergodic if π(x) ≤
Mf(x), see the definition below.

Definition 13 An ergodic Markov chain with invariant distribution π is geomet-

rically ergodic if there exist a non-negative function M such that Eπ(M(X)) <
∞ and a positive constant r < 1 such that

||Pn(x, ·)− π(·)|| ≤ M(x)rn

for all x and all n. If the function M is bounded above, that is there exists K > 0
such that M(x) < K for all x then the chain is called uniformly ergodic.

3. Random walk Metropolis-Hastings sampler

Here we choose q(x, y) = f(y−x) for some probability mass function or density

f . The random walk Metropolis-Hastings sampler derives its name from the fact

that the proposals are made according to a random walk, that is

y = x+ z

where z is drawn from f . The acceptance probability for this proposal distribu-

tion is

α(x, y) = min{1, π(y)f(x− y)

π(x)f(y − x)
}.

Note that if f is symmetric about 0, then this is a Metropolis Sampler. The

example on the bi-modal mixture distribution was an example for a Metropolis

Sampler and also of the random walk MH sampler.

Common choices for f are multivariate Normal densities, t-densities or uniform

densities.

4. The Metropolis sampler

Metropolis et al. originally proposed to use symmetric proposal pmf’s or densi-

ties, that is q(x, y) = q(y, x). The acceptance probability then simplifies to

α(x, y) = min
{

1,
π(y)

π(x)

}

.

5.4 Mixtures and Cycles

The description of Markov chain Monte Carlo may suggest that we have to do ei-

ther Gibbs Sampling or a random walk Metropolis-Hastings sampler, etc. We can, in

fact, combine different types of updates into one MCMC algorithm, a so-called hybrid

MCMC algorithm. We can do this by either choosing the type of update randomly or

systematically. Let p1(x, ·), . . . , pn(x, ·) be the transition densities/pmfs of the differ-

ent update types that we are considering. A random choice of update corresponds to a

mixture of kernels, that is our Markov chain is updated according to

p(x, y) =

n
∑

i=1

αipi(x, y)
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where αi is the probability with which we choose an update of type i. Alternatively

we may systematically cycle through our selection of update mechanisms leading to a

chain with transition kernel defined by

p(x, y) =

∫

. . .

∫ n
∏

i=1

pi(zi−1, zi)dz1 . . . dzn−1,

where z0 = x and zn = y.

Lemma 5 Let p1(x, y) and p2(x, y) be two transition densities/pmfs with the same

stationary distribution π. If p1(x, y) is uniformly ergodic then the mixture kernel

p(x, y) = αp1(x, y) + (1− α)p2(x, y), 0 < α < 1

is also uniformly ergodic.

The above lemma is the reason why we often include an independence sampler as an

update kernel as under the appropriate conditions it ensures uniform ergodicity.

6 Implementational issues in MCMC

6.1 Assessing convergence

How to assess convergence has been a fiercely discussed topic in the literature. Some of

the disagreement is due to the fact that there are different types of convergence. Firstly,

there is the issue of whether the distribution of the chain is close to the stationary

distribution. Secondly, there is the issue of how well the chain explores the state space.

Generally, chains that do not explore the state space well (we say, mix slowly) tend to

converge slower. But note that even if the chain is in stationarity then a slow mixing

chain will lead to very inaccurate estimates, a third issue that is discussed using the

general keyword of convergence. All three issues are related to each other but are

not exactly the same and this has lead to a lot of confusion. For example, a chain

with a bi-modal stationary distribution may not have reached equilibrium yet as it only

ever has visited the region around one of the modes. Now suppose we are interested

in estimating a function that is equal for both modes. Then it can happen that the

corresponding ergodic average converges much earlier than the chain itself.

6.2 Initialisation bias and Burn-In

The Markov chain of interest is usually started in a state that does not have the station-

ary distribution (otherwise we would not be doing MCMC)! In practical 3 you explored

the effect the initial state can have on the states visited by the Markov chain. To re-

duce the possibility of a bias, the so-called initialisation bias caused by the effect of the

starting value, an initial M steps of the chain are discarded and estimation is based on

the states visited after time M , ie. we use ergodic average

hN =
1

N −M

N
∑

n=M+1

h(Xn).
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The initial phase up to time M is called the transient phase or burn-in period. How do

we decide on the length of the burn-in period? A first step would be to examine the

output of the chain by eye. This is a very crude method but is very quick and cheap.

However, this should be followed up by more sophisticated methods.

To assess convergence to stationarity there are essentially three potential approaches.

1. Convergence rate computations:

When we looked at the speed of convergence for the independence sampler we

essentially performed a convergence rate calculation. The advantage of this ap-

proach is, of course, that it is exact. In general, these calculations can be difficult

and will only apply to specific cases. While they are exact methods, they can

be overly pessimistic as they take into account any worst-case scenario even if

it has a very small probability of occurring. At times they can be so pessimistic

that the suggested burn-in period simply becomes impractical.

2. Perfect simulation:

This is a method that augments conventional MCMC methods in such a way that

the chain is automatically run until it has reached convergence. Again, it only

works in specific cases and can be slow. But it is again an exact method (as

far as any simulation method can be exact). Researchers at the Warwick Statis-

tics department were actively involved in extending the first perfect simulation

algorithm introduced by Propp and Wilson.

3. Convergence diagnostics:

This is the most widely used method. Convergence diagnostics examine the

output of the chain and try to detect a feature that may suggest divergence from

stationarity. They are usually relatively easy to implement. However, while

they may indicate that convergence has not been reached they are not able to

guarantee convergence. We will examine the most commonly used diagnostics

in the next section. A collection of convergence diagnostics is implemented in

CODA, which is freeware that runs on certain versions of SPlus, and BOA which

runs on R.

6.3 Convergence diagnostics

In the following we introduce a small collection of common convergence diagnostics.

There are many more available, if you are interested then check the MCMC literature.

6.3.1 Geweke’s method

Geweke’s method is based on spectral analysis methods from time series analysis.

Geweke considers two subsequences of a run of a Markov chain, one consisting of

the states immediately after burn-in and the other consisting of states at the very end of

the run. Suppose our run is of length n and we want to examine whether a burn-in of

M time steps is sufficient. Consider the ergodic averages

h̄A =
1

nA

M+nA
∑

t=M+1

h(Xt) and h̄B =
1

nB

n
∑

t=n−nB

h(Xt)
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where nA +M < n− nB . If they chain has converged then the two ergodic averages

should be similar. How similar they should be can be quantified using the appropriate

Central Limit Theorem. For this, we need estimates of the variance of the ergodic

averages (under stationarity) and we can use the spectral density to derive these. The

spectral density for the time series (h(Xt))t∈Z is defined as

S(ω) =
1

2π

∞
∑

t=−∞
Cov(h(X0), h(Xt)) exp(itω)

where i is the square root of -1. We can estimate the spectral density using kernel

estimation methods. We now have the following asymptotic result: If the ratios nA/n,

nB/n are fixed with (nA + nB)/(n−M) < 1 then under stationarity we have

Zn =
h̄A − h̄B

√

1
nA

ŜA(0) +
1
nB

ŜB(0)
→ N (0, 1)

as n → ∞ and convergence is convergence in distribution. Here ŜA(0) and ŜB(0) are

spectral estimates of the appropriate variances. We can use the above asymptotics to

approximately test whether the means of the two sequences are equal subject to varia-

tion. Note that this is testing for a sufficient, not a necessary condition for convergence.

By default BOA implements this statistic by choosing nA to be n/10 and nB = n/2
which was originally suggested by Geweke.

6.3.2 Gelman and Rubin’s method

This method requires several chains started in initial states that are overdispersed com-

pared to the stationary distribution. The idea is that if there is initialisation bias then

the chains will be close to different modes while under the stationary regime the chains

should behave in a similar manner. If the chain tends to get stuck in a mode then the

path appears to be experiencing stable fluctuations but the chain has not converged yet.

In this case we speak of “meta-stability” which is often caused by multi-modality of

the stationary distribution. Gelman and Rubin apply concepts from ANOVA techniques

(and thus rely on Normal asymptotics). We assume each of a total of m chains is run

for 2n iterations where the first n iterations are classified as burn-in. We first compute

the variance of the means of the chains:

B =
1

m− 1

m
∑

j=1

(h̄.j − h̄..)
2

Here we run m chains and Xij is the state of chain j at time i. h̄.j is the ergodic

average of the jth chain based on the last n iterations and h̄.. is the average of the

ergodic averages of the m chains. This is interpreted as the between chain variance. As

n → ∞ the between chain variance will tend to zero.

Then we compute the within chain variance W , which is the mean of the variance

of each chain, that is

W =
1

m

m
∑

j=1

1

n− 1

2n
∑

i=n+1

(h(Xij)− h̄.j)
2.
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Note that this quantity initially will tend to be an underestimate of the posterior vari-

ance. We calculate the weighted average of both variance estimates

V =
n− 1

n
W +B,

which is an estimate of the posterior variance. We then monitor R =
√

V
W which is

called the potential scale reduction factor (PSRF). R tends to be bigger than one and

will converge towards one as stationarity is reached. Using Normal asymptotics, one

can show that R has an F -distribution and the hypothesis of R = 1 can be tested. As

a rule of thumb if the 0.975-quantile is less than 1.2, no lack of convergence is being

detected.

Brooks and Gelman suggested a correction to the above scale reduction factor to

take account of the sampling variability in the variance estimates. They also extended

the above approach using techniques of multivariate ANOVA in order to make it appli-

cable to multivariate chains.

BOA computes the uncorrected and the corrected, univariate PSRF as well as the

0.975-quantile. Moreover, it computes the multivariate PSRF.

6.3.3 The method by Raftery and Lewis

Set p = Pπ(h(X) ≤ u) for some u, then the method of Raftery and Lewis estimates

the number of iterations needed to produce an α%-confidence interval of length 2r for

p. In detail, it computes the following quantities:

M = the burn-in length

N = the total number of iterations

k = the thinning factor, ie we only use every kth value for estimation

The method starts with the binary process Zt = 1[h(Xt)≤u] which in general is not

Markov. However, if we consider Z
(k)
t = Ztk then if is reasonable to assume that

this is approximately Markov for large k. First the method determines k by comparing

the fit of a first-order Markov chain, ie. Z
(k)
t is conditionally independent of the past

given Z
(k)
t−1, with the fit of a second-order Markov chain, ie. Z

(k)
t is conditionally

independent of the past given both Z
(k)
t−1 and Z

(k)
t−2. We then choose the smallest k for

which the first-order model is preferred.

Now, let the transition matrix of Z
(k)
t be given by the matrix

Q =

(

1− α α
β 1− β

)

which has stationary distribution π = (α + β)−1(β, α). Then for λ = 1 − α − β we

have

Qn =

(

β
α+β

α
α+β

β
α+β

α
α+β

)

+
λn

α+ β

(

α −α
−β β

)
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Let e0 = (1, 0), e1 = (0, 1) and consider

P(Z(k)
n = i|Z(k)

0 = j) = ejQ
neTi

which we would like to estimate within ǫ of π(i). This can be done if

|λn| ≤ (α+ β)ǫ

max(α, β)

which holds for

n ≥ n0 = log
( (α+ β)ǫ

max(α, β)

)

/ log(|λ|)

and so a suitable burn-in of M = n0k is suggested.

To determine the total runtime N one can show that asymptotically

Z̄(k)
n =

1

n

n
∑

t=1

Z
(k)
t ∼ N

(

p,
(2− α− β)αβ

n(α+ β)3

)

and so to produce a γ%-confidence interval of length at most 2r we need to choose

n ≥ n1 =
(2− α− β)αβ

n(α+ β)3
1

r2

(

Φ−1
(

0.5(γ + 1)
))2

,

where Φ is the cdf of a standard Normal distribution, and so the total run time suggested

is N = n1k.

This convergence diagnostic is implemented in BOA. BOA also outputs a lower

bound on the total run time which is the number of sample points needed to estimate the

specified quantile to the desired accuracy using an iid sample. The dependence factor

measures the multiplicative increase in the number of iterations needed compared to

an iid sample. This will usually be greater than one due to the autocorrelation of the

chain, see the next section on the Monte Carlo error.

6.4 Monte Carlo error

Once we have collected samples from our run of the Markov chain, we use ergodic

averages to estimate the quantities of interest. But how accurate are these estimates

and how large should we choose the sample size?

Definition 14 (Autocovariance/Autocorrelation): In stationarity, the autocovariance

of lag k for the time series (h(Xk))k≥0 is defined as

γk = Cov
(

h(Xn), h(Xn+k)
)

n, k ≥ 0,

γ0 = Cov
(

h(Xn), h(Xn)
)

= Var
(

h(Xn)
)

The autocorrelation of lag k is defined as

ρk =
γk
γ0

, k ≥ 0.
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Note that if the chain X is in stationarity and h is the identity function then γ0 =
σ2 where σ2 is the variance of the stationary distribution π. But what we are really

interested in is the variance of ergodic averages. Define

τ2n
n

= Var(h̄n) = Var
( 1

n

n
∑

k=1

h(Xk)
)

.

Note that to keep notation simple we omit the dependence of τ2n on h.

Lemma 6 In stationarity

τ2n = σ2
[

1 + 2

n−1
∑

k=1

n− k

n
ρk

]

.

Proof:

τ2n
n

= Var
( 1

n

n
∑

i=1

h(Xi)
)

=
1

n2

[

n
∑

i=1

Var
(

h(Xi)
)

+ 2
n−1
∑

i=1

∑

j>i

Cov
(

h(Xi), h(Xj)
)]

=
1

n2

[

nσ2 + 2

n−1
∑

i=1

n−i
∑

k=1

Cov
(

h(Xi), h(Xi+k)
)]

=
σ2

n

[

1 +
2

nσ2

n−1
∑

i=1

n−i
∑

k=1

γk

]

=
σ2

n

[

1 +
2

n

n−1
∑

i=1

n−i
∑

k=1

ρk

]

=
σ2

n

[

1 +
2

n

n−1
∑

k=1

n−k
∑

i=1

ρk

]

=
σ2

n

[

1 + 2

n−1
∑

k=1

(n− k)

n
ρk

]

One can show that as n → ∞

τ2n −→ τ2 = σ2
[

1 + 2

∞
∑

k=1

ρk

]

.

The quantity τ2/σ2 is called the integrated autocorrelation time and we have already

encountered τ2 in the statement of the Central Limit Theorem for Markov chains.
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From the above it follows that the accuracy of MCMC estimates depends on the

autocorrelation. Suppose Y1, . . . , Yn are independent and identically distributed ac-

cording to π. Then the mean of the sample 1
n

∑n
i=1 Yi has variance

Var
( 1

n

n
∑

i=1

Yi

)

=
σ2

n
.

Now compare this with the variance of the ergodic average 1
n

∑n
i=1 Xi which is

τ2
n

n .

From the above lemma it follows that if the autocorrelations of the chain X are positive

then the ergodic average will be less accurate than an estimate based on an indepen-

dent sample. Informally, this may be explained by the fact that positively correlated

variables carry redundant information and so are less informative than independent

variables. On the other hand, if we can introduce negative autocorrelations into our

Markov chain, then this will make our estimation procedure more accurate.

The estimation of the integrated autocorrelation time is difficult and there are vari-

ous approaches one might to consider.

1. Naive covariance estimator:

γ̂k =
1

n

n−k
∑

i=1

(

h(Xi)− h̄n

)(

h(Xi+k)− h̄n

)

However the resulting estimator

τ̂2 = γ̂0 + 2

n−1
∑

k=1

γ̂k

is not consistent.

2. Blocking or batch estimation:

Divide the run of your chain into b blocks of length k. The idea is that averages

of different blocks are asymptotically independent and we can use them in a

standard variance estimator. Note that Var(h̄n) ≈ 1
bVar(h̄

(j)
k ) where h̄

(j)
k is the

ergodic average in the jth block. Thus for suitably large b and k we have

Var(h̄n) ≈ 1

b(b− 1)

b
∑

j=1

(

h̄
(j)
k − h̄n

)2

.

3. Window estimates:

Use τ̂2 = γ̂0 + 2
∑L

k=1 γ̂k for suitably chosen L. There are different ways of

choosing L and here are some of the most common suggestions:

• truncated periodogram: choose L to be the smallest integer such that L >
3
∑L

k=1 ρ̂k.

• initial series estimator: choose L to be the largest integer such that for

k ≤ L the series Γ̂k = γ̂2k + γ̂2k+1 remains positive, non-decreasing and

convex.
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6.5 Scaling

Consider a Metropolis-Hastings algorithm and suppose we have decided on the para-

metric proposal distributions that we are going to use. We now have to decide which

values to choose for the parameter(s) θ of our proposals. For example, we have de-

cided to do a random walk Metropolis algorithm with Normal proposals. We then need

to choose a variance for the Normal proposal distribution. This is commonly known

under the keyword of scaling.

First, let us consider the independence sampler and suppose the proposal distribu-

tion f is such that π(x)/f(x) ≤ M for all x. We have shown that in this case the

expected acceptance probability in stationarity is bounded below by 1/M . We also

have shown that we have uniform ergodicity with rate (1 − 1/M). So it makes sense

to choose θ which minimizes the bound M . However, we may not be able to do this

analytically. A more empirical approach is to estimate the average acceptance rate in

trial runs and then choose the parameter θ that gives us the largest acceptance rate.

While for the independence sampler it is advantageous to try to maximise the av-

erage acceptance rate, this is not the case for the random walk Metropolis-Hastings

sampler. Suppose we have a Normal proposal distribution centred at the current value

of the chain and with variance σ. If we choose σ very small, then we get a high ac-

ceptance rate but it takes a long time to explore the state space. The performance is

particularly bad when we have a multi-modal target distribution and the chain has to

traverse low probability regions in order to move from one mode to another. This is a

typical situation in which meta-stability may arise. On the other hand if we choose a

target distribution that proposes very large steps, then a lot of proposals will lie in the

tails of the target distribution and thus are likely to be rejected. As a result the chain

does not move at all. It is clear that we have to find an appropriate middle ground.

For a standard Normal target distribution with Normally distributed random walk

proposals, researchers derived an optimal value for the variance σ of the proposal dis-

tribution by minimizing the following efficiency criterion:

(

1 + 2
∑

k>0

ρk

)

.

From the discussion of the Monte Carlo error you will recognize this as the ratio of

the asymptotic variance of the ergodic average 1
n

∑n
i=1 h(Xi) in stationarity and the

variance of the average based on an iid sample. The optimal value for the variance σ
of the Normal proposal distribution turned out to be σ = 2.4 with the corresponding

average acceptance rate of

α =
2

π
arctan(2/σ) = 0.44.

The authors did further investigations that lead to the recommendation of trying to

achieve an acceptance rate close to 1/2 for low dimensional problems and an accep-

tance rate close to 1/4 for high dimensional problems. Please note that these are only

rough guides. Really, you need to carefully explore the behaviour of your chain in trial

runs. But it is worthwhile to keep in mind that for a random walk Metropolis-Hastings

algorithm aiming at too high an acceptance probability is counter-productive.
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One more word of warning: adaptive algorithms in which parameters are adjusted

again and again during the simulation based on the past of the chain are becoming very

popular. However, they tend to have complicated convergence properties and constant

adaptation can indeed destroy convergence properties or alter the associated stationary

distribution. A safe (but maybe not the best) option is to first calibrate your proposal

distribution in trial runs and then fix the parameters and keep them fixed.

7 Gibbs Sampler

7.1 Introduction

Example 15 Suppose y = (y1, . . . , yn) are iid observations from a N (µ, σ2) distri-

bution. Thus a likelihood function is given by

L(µ, σ2|y) =
1

(2πσ2)n/2
exp

(

− 1

2σ2

n
∑

i=1

(yi − µ)2
)

We take a Bayesian approach and model prior information on µ and σ2. Rather than

specifying a prior on the variance σ2, we model the precision τ = 1/σ2. We as-

sume µ and τ are independent and that µ has a N (m, s2) prior distribution and τ a

Gamma(α, β) distribution. The posterior is then given by

π(µ, τ |y) ∝ L(µ, τ−1|y) exp
(

− 1

2s2
(µ−m)2

)

exp(−βτ)τα−1

∝ exp
(

− 1

2s2
(µ−m)2

)

exp
(

− τ

2

n
∑

i=1

(yi − µ)2
)

exp(−βτ)τα−1+n/2

There is no closed form expression for the normalising constant of this posterior distri-

bution and so we may consider sampling this distribution using some indirect sampling

method. But notice the following. If we condition on τ , then the conditional distribution

of µ has a standard form, namely Normal with mean (nȳτ +ms−2)/(nτ + s−2) and

precision nτ+s−2 where ȳ is the sample average. If we condition on the other hand on

µ then τ has a Gamma(α+n/2, β+ 1
2

∑n
i=1(yi−µ)2) distribution. Because these are

standard distributions it seems a natural approach to use these as proposal distribu-

tions. The algorithm would proceed as follows. Choose an initial state X0 = (µ0, τ0)
within the state space. Now suppose Xn = (µn, τn) are given, then we produce Xn+1

as follows:

1. Sample µ ∼ N (nȳτn+ms−2

nτn+s−2 , (nτn + s−2)−1) and U ∼ Uniform(0,1).

2. If U ≤ α((τn, µn), (τn, µ)) then set µn+1 = µ. Else set µn+1 = µn.

3. Sample τ ∼ Gamma
(

α+n/2, β+ 1
2

∑n
i=1(yi−µn)

2
)

and U ∼ Uniform(0,1).

4. If U ≤ α((τn, µn+1), (τ, µn+1)) then set τn+1 = τ . Else set τn+1 = τn.

5. Set Xn=1 = (µn+1, τn+1).
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Note the following:

• The fact that the normalizing constant of the posterior distribution is unknown

does not matter, as it cancels out when computing the conditional distribution.

• As we will show a little later the acceptance probability α((τn, µn), (τn+1, µn+1))
is constant one, and so we can simplify the algorithm and produce Xn+1 as fol-

lows:

1. Sample µn+1 ∼ N (nȳτn+ms−2

nτn+s−2 , (nτn + s−2)−1).

2. Sample τn+1 ∼ Gamma(α+ n/2, β + 1
2

∑n
i=1(yi − µn+1)

2.

3. Set Xn+1 = (µn+1, τn+1).

Suppose we want to sample a random vector (Y (1), . . . , Y (d)) with probability

mass function or density π. The Gibbs Sampler uses full conditional distribution to

produce a d-dimensional Markov chain {(X(1)
n , . . . , X

(d)
n ), n = 0, 1, . . .}. Let us first

define the full conditional distributions.

Definition 15 Full conditional distributions

(a) If S is discrete let π(y(1), . . . , y(d)) be the p.m.f. of the random vector Y =
(Y (1), . . . , Y (d)). Set

π
(

y(−j)
)

=
∑

z∈S
π(y(1), . . . , y(j−1), z, y(j+1), . . . , y(d))

then the jth full conditional p.m.f. is given by

πj

(

x | y(i), i 6= j
)

= P

(

Y (j) = x
∣

∣

∣ Y (i) = y(i), i 6= j
)

=
P

(

Y (j) = x, Y (i) = y(i), i 6= j
)

P

(

Y (i) = y(i), i 6= j
)

=
π(y(1), . . . , y(j−1), x, y(j+1), . . . , y(d))

π
(

y(−j)
)

(b) Now let S be continuous and let π(y(1), . . . , y(d)) be the density of the random

vector Y = (Y (1), . . . , Y (d)). Define

π
(

y(−j)
)

=

∫

S
π(y(1), . . . , y(j−1), z, y(j+1), . . . , y(d))dz

then the jth full conditional density is defined as

πj

(

x | y(i), i 6= j
)

=
π(y(1), . . . , y(j−1), x, y(j+1), . . . , y(d))

π
(

y(−j)
)
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We call the distribution defined by πj(x|y(i), i 6= j) the jth full conditional distribution

of π. Note that we only need to determine the jth full conditional distribution up to a

normalizing constant and so terms that do not depend on x can be ignored.

We can now define the general Gibbs Sampler: Assume Xn = x = (x(1), . . . , x(d)) ∈
S . Then proceed as follows:

1. Choose j ∈ {1, . . . , d} at random (or sequentially).

2. Sample x from πj(x|x(i), i 6= j) and set

Xn+1 =
(

x(1), . . . , x(j−1), x, x(j+1), . . . , x(d)
)

.

The Gibbs sampler is a Metropolis-Hastings sampler that uses the full conditional dis-

tributions as proposal distributions. The proposal for the Gibbs sampler is always ac-

cepted as the following computations show. Suppose that the vector y is such that

x(i) = y(i) for i 6= j. Then the acceptance probability is

α(x, y) = min
{

1,
π(y)πj(x

(j)|x(i), i 6= j)

π(x)πj(y(j)|x(i), i 6= j)

}

= min
{

1,
π(y)

π(x)

π(x)/π(x(−j))

π(y)/π(y(−j))

}

= min
{

1,
π(y)

π(x)

π(x)/π(x(−j))

π(y)/π(x(−j))

}

= 1.

The Gibbs sampler is based on full conditional distributions. It is remarkable that

full conditional distributions unlike marginal distributions can uniquely specify the

joint distribution. This is due to the Hammersley-Clifford theorem which we state

for the two-dimensional case.

Theorem 6 Hammersley-Clifford

If
∫ π(y|x)

π(x|y)dy exists, then the joint density associated with the conditional densities

π(y|x) and π(x|y) is given by

π(x, y) =
π(y|x)

∫

π(y|x)/π(x|y)dy .

Proof: We have π(y|x)π(x) = π(x|y)π(y) and so

∫

π(y|x)
π(x|y)dy =

∫

π(y)

π(x)
dy =

1

π(x)

and so the claim follows if the above integral exists. In fact the Gibbs sampler was

originally developed for complex models that are defined through their full conditional

distributions, the so-called local characteristics of Gibbs distributions. These are dis-

tributions from statistical mechanics like the Ising model who are defined through an

energy function. Let’s have a look at how Gibbs sampling works in the Ising model.
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Example 16 Gibbs Sampler for Ising model

Suppose we want to sample the Ising model using the Gibbs Sampler. We first need to

determine the full conditional distributions. Recall that

π(x(1), . . . , x(m)) =
1

Z
exp

(

J
∑

(i,k)∈E
x(i)x(k)

)

,

where E = {(i, k) : i ∼ k} the set of all neighbour pairs of sites. Let Ej = {(i, k) :
i ∼ k, j ∈ {i, k}} be the set of neighbour pairs in which one of the sites is the site j.

Then we have

πj(x|x(i), i 6= j) =
π(x(1), . . . , x(j−1), x, x(j+1), . . . , x(m))

∑

z∈{−1,1} π(x
(1), . . . , x(j−1), z, x(j+1), . . . , x(m))

=

1
Z exp

(

J
∑

i∼j x
(i)x+ J

∑

(i,k)∈E\Ej
x(i)x(k)

)

∑

z∈{−1,1}
1
Z exp

(

J
∑

i∼j x
(i)z + J

∑

(i,k)∈E\Ej
x(i)x(k)

)

=
exp

(

J
∑

i∼j x
(i)x
)

exp
(

J
∑

(i,k)∈E\Ej
x(i)x(k)

)

∑

z∈{−1,1} exp
(

J
∑

i∼j x
(i)z
)

exp
(

J
∑

(i,k)∈E\Ej
x(i)x(k)

)

=
exp

(

J
∑

i∼j x
(i)x
)

∑

z∈{−1,1} exp
(

J
∑

i∼j x
(i)z
)

=
exp

(

J
∑

i∼j x
(i)x
)

exp
(

− J
∑

i∼j x
(i)
)

+ exp
(

J
∑

i∼j x
(i)
) .

It follows that

πj(1|x(i), i 6= j) =
1

exp
(

− 2J
∑

i∼j x
(i)
)

+ 1
.

The Gibbs sampler now cycles through the sites (at random or sequentially) and up-

dates the spin at site j to an upward spin (x(j) = 1) with probability 1
1+exp(−2J

∑
i∼j x(i))

and to a downward spin (x(j) = −1) with probability 1 − 1
1+exp(−2J

∑
i∼j x(i))

. Note

that these probabilities do not depend on the normalising constant 1/Z. Moreover,

notice that the update probabilities for each site only depend on the values of its neigh-

bour sites. In the statistical physics literature the above Gibbs Sampler is called the

heat bath algorithm, because a heat bath causes spins to flip.

We can use detailed balance to show that the invariant distribution of the Gibbs

Sampler is π.

Lemma 7 Each transition of the Gibbs Sampler satisfies detailed balance with respect

to π.
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Proof: Let x = (x(1), . . . , x(d)) and y = (x(1), . . . , x(j−1), z, x(j+1), . . . , x(d)). Now,

let p(x, y) denote the transition densities for the Gibbs Sampler. Then we have

π(x)p(x, y) = π(x)
π(y)

π(x(−j))
= π(y)

π(x)

π(x(−j))

= π(y)πj(x
(j)|x(i), i 6= j) = π(y)p(y, x).

and so detailed balance holds.

The above theorem shows that the Gibbs Sampler chain has the desired invariant dis-

tribution. Thus, if the chain is ergodic then its distribution converges towards π. The

following lemma provides a condition that ensures irreducibility:

Lemma 8 Let (X(1), . . . , X(d)) be a random vector with joint density π(x(1), . . . , x(d)).
Let πi(x) be the marginal density of X(i). If the fact that πi(x

(i)) > 0 for all i ∈
{1, . . . , d} implies that π(x(1), . . . , x(d)) > 0 then the Gibbs sampler is π-irreducible.

Example 17 Consider the following bivariate distribution

π(x, y) =
1

2
1[0≤x≤1,0≤y≤1] +

1

2
1[−1≤x≤0,−1≤y≤0]

The conditional densities are given by

π(x|y) =

{

1[x∈(0,1)] if y ∈ (0, 1)
1[x∈(−1,0)] if y ∈ (−1, 0)

π(y|x) =

{

1[y∈(0,1)] if x ∈ (0, 1)
1[y∈(−1,0)] if x ∈ (−1, 0)

so in principle we could run a Gibbs Sampler. However it would be reducible because

if we started it say in the square (0, 1)× (0, 1) it would never be able to reach the other

part of the state space which is the square (−1, 0)×(−1, 0). If we look at the marginal

densities we find that

πx(x) =
1

2
1[0≤x≤1] +

1

2
1[−1≤x≤0] and

πy(y) =
1

2
1[0≤y≤1] +

1

2
1[−1≤y≤0]

which does not satisfy the positivity condition as πx(−0.5) > 0 and πy(0.5) > 0 but

π(−0.5, 0.5) = 0.

It can be shown that Harris recurrence holds if the transition kernel of a π-irreducible

Gibbs chain is absolutely continuous (with respect to an appropriate dominating mea-

sure).
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7.2 Blocking and Re-parametrisation

The performance of the Gibbs Sampler is often poor when we have strong correlation

between the individual components of the multi-dimensional target distribution. One

way of avoiding this is by re-parametrising the distribution so that we sample variables

with little correlation.

Example 18 Bivariate Normal distribution Recall example 13. If the correlation ρ is

close to one, then the performance of the Gibbs Sampler deteriorates. If we look at the

full conditional distributions then this becomes very apparent. For example, x given y
is updated according to a N (ρy, 1− ρ2) distribution, so, for ρ very close to one, x will

be updated to a value close to y. Similarly, the y-component will be updated to a value

that lies close to the value of the current x-component. The problem can be solved

easily by sampling from the principal components of the bivariate Normal distribution.

The principle components are also Normally distributed but are uncorrelated. Thus we

can develop a Gibbs Sampler for the principle components and then simply derive our

original variables from the appropriate linear combination of principle components.

See Practical 3 for more details. (Note that because the principle components are Nor-

mal and are uncorrelated the re-parameterized Gibbs Sampler does actually sample

the principle components exactly, not only approximately. So in this case we could

sample from the target bivariate Normal using a simple transformation. However, this

example illustrates very well the powerful effect that re-parametrisation can have.)

Another approach to avoid poor performance due to high correlation is to block

variables. This means that variables that are highly correlated are updated simultane-

ously. So for example if we have (X(1), X(2), X(3)) and X(1) and X(2) have a strong

correlation, then instead of sampling from the univariate full conditional distributions

we may instead sample from the conditional distribution of (X(1), X(2)|X(3)) to up-

date both the first and the second component simultaneously. After having updated the

first two components, we update the third component using the usual univariate full

conditional distribution.

7.3 Hierarchical models and graphical models

A set of distributions for which Gibbs Sampling is particular well adapted is that of

hierarchical models. Here we have

π(x) =

∫

π1(x|z1)π2(z1|z2) . . . πk(zk−1|zk)πk+1(zk)dz1 · · · dzk,

where z1, . . . , zk are hyper-parameters. Such models occur often when we are mod-

elling complex data that requires the introduction of several layers of prior distribution.
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Example 19 A normal hierarchical model:

Consider the following model:

Yij ∼ N
(

αi + βi(xj − x̄),
1

τ

)

αi ∼ N
(

α,
1

τα

)

βi ∼ N
(

β,
1

τβ

)

τ ∼ Gamma(10−3, 103), i ∈ {1, . . . ,m}, j ∈ {1, . . . , k}.

We have encountered a similar model when we introduced the Gibbs Sampler. But

suppose now we would like to model the uncertainty we have in the prior parameters

α, τα, β and τβ . To do this we extend the model as follows:

α ∼ N (0, 106)

τα ∼ Gamma(10−3, 103)

β ∼ N (0, 106)

τβ ∼ Gamma(10−3, 103)

Note that these are very “flat” priors. You might want to work out the full conditional

distributions for this example, but you may consider letting WinBUGS do the work. The

above model has been used to analyse the growth in rats.

A convenient way of specifying joint distributions are graphical models. A graphi-

cal model uses a directed acyclic graph (DAG) to indicate the conditional independence

within a joint distribution. We say X is conditionally independent of Z given Y if the

conditional random variable X|Y is independent of Z. The DAG consists of nodes

and of directed edges (arrows) which are acyclic. This means that if you follow the

directed edges you cannot return to a node. The nodes represent the variables of the

model, we use squares to denote fixed variables and circles to denote random vari-

ables. The edges indicate the relationship between variables. Solid arrows denote a

probabilistic relationship and dashed edges a deterministic one. DAGs are useful be-

cause they identify relevant variables when computing full conditional distributions. In

WinBUGS you can specify a target distribution using a DAG with the Doodle Tool.

Example 20 Normal hierarchical model The posterior distribution specified in the

previous example is given by the following DAG. There is a slight change in notation,

but it is a good exercise to work out which is which from the above model description.

42

Downloaded by Colin Fox (colinfox373@gmail.com)

lOMoARcPSD|3708389



7.4 Data augmentation

A common application area for data augmentation is Bayesian missing data problems.

Suppose the (complete data) likelihood for the parameter θ given data z is L(θ|z).
However, some of the data is incomplete, that is z = (zobs, zmiss) where zmiss has not

been observed. Instead of using the complete data likelihood we now need to use the

incomplete data likelihood L(θ|zobs) where

L(θ|zobs) =

∫

L(θ|zobs, zmiss)dzmiss.

Then the appropriate posterior is given by

π(θ|zobs) ∝ L(θ|zobs)π(θ) =

∫

L(θ|zobs, zmiss)π(θ)dzmiss

which often will be more complex than the posterior model based on the complete

data likelihood. We can avoid the problem by sampling from the joint posterior for the

missing data and the parameter θ defined by

π(θ, zmiss|zobs) ∝ π(θ)L(θ|zobs, zmiss)

and ignoring the values imputed for the missing data. We can use Gibbs sampling

which alternatingly samples from the conditional distribution of zmiss given θ and zobs
and from the conditional distribution of θ given zmiss and yobs.

Example 21 (Robert, 2002)

Consider data y = (y1, . . . , yn) which are iid Poisson(λ) distributed. We do not receive

this raw data, but the count data x = (x0, x1, x2, x3, x4). For i = 0, . . . , 3 the number

xi is the number of times i occurs in y. However, x4 is the number of j ∈ y such that

j ≥ 4. Thus for x4 experiments we do not have the exact outcome. The incomplete

data likelihood for this data is then

exp(−λ

3
∑

i=0

xi)

3
∏

i=0

(
λi

i!
)xi
(

1− e−λ
3
∑

i=0

λi

i!

)x4
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Assuming y is ordered in descending order, we have that ymis = y1, . . . , yx4 . If we

knew the missing data then the (complete data) likelihood would have the much simpler

form:

exp(−λn)
3
∏

i=0

(
λi

i!
)xi

x4
∏

j=1

λyj

yj !

As prior for λ we choose π(λ) = 1/λ. Data Augmentation now produces a sample

from the joint density of λ and ymis given by

π(λ, ymis|yobs) ∝
1

λ
exp(−λn)λm

x4
∏

j=1

λyj

yj !
,

where y1, . . . , yx4
≥ 4 and m =

∑3
i=0 ixi. Suppose the current state of the Gibbs

Sampler is Xt = (λ, y1, . . . , yx4). Then we update Xt as follows. Sample

ỹj ∼ Poisson(λ) conditional on ỹj ≥ 4 for j = 1, . . . , x4

λ̃ ∼ Gamma(m+

x4
∑

j=1

ỹj , n)

Data augmentation and thus Gibbs sampling may also be applied when introducing

auxiliary variables. Auxiliary variables are not strictly missing data, but are introduced

for example to make a likelihood function more tractable. (Recall that we have seen

earlier how auxiliary variables and thus increasing the state space can make sampling

more amenable!) A common area where we might consider using such an approach is

mixture distributions.

Example 22 Bayesian mixture distribution: Consider the following Normal mixture

model with two components:

f(y|µ1, µ2) =
1

2
exp

(

− 1

2
(y − µ1)

2
)

+
1

2
exp

(

− 1

2
(y − µ2)

2
)

.

Now consider the data y = (y(1), . . . , y(k)) which is iid each with density f . Then the

joint density for data y is

f(y|µ1, µ2) =

k
∏

i=1

[1

2
exp

(

− 1

2
(y(i) − µ1)

2
)

+
1

2
exp

(

− 1

2
(y(i) − µ2)

2
)]

Now, if p(µ1, µ2) is the prior density for µ1 and µ2 then the posterior density for µ1

and µ2 is given by

π(µ1, µ2|y) ∝ p(µ1, µ2)
k
∏

i=1

[

exp
(

− 1

2
(y(i) − µ1)

2
)

+ exp
(

− 1

2
(y(i) − µ2)

2
)]

.

Suppose we observed the vector I = (I1, . . . , Ik) which indicates which data point

was produced by which mixture component. Thus if Ij = 1 then yj ∼ N (µ1, 1) and if
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Ij = 2 then yj ∼ N (µ2, 1). Then the density of y given I is

f(y|µ1, µ2, I) ∝
∏

i:Ii=1

exp
(

− 1

2
(y(i) − µ1)

2
)

∏

i:Ii=2

exp
(

− 1

2
(y(i) − µ2)

2
)

.

Now suppose the prior for the means is a bivariate Normal distribution with mean

θ = (θ1, θ2) and covariance matrix Σ = I, the identity matrix. Then

p(µ1, µ2) = p(µ1)p(µ2) ∝ exp(−1

2
(µ1 − θ1)

2) exp(−1

2
(µ2 − θ2)

2).

Assume the uniform distribution on {0, 1}k for I then the joint posterior of µ1, µ2 and

I is given by

π(µ1, µ2, I|y) ∝ p(µ1)p(µ2)p(I) exp
(

− 1

2
(
∑

i:Ii=1

(y(i)−µ1)
2+

∑

i:Ii=2

(y(i)−µ2)
2)
)

.

Note how much simpler the above expression is than the original posterior. We now

develop a Gibbs Sampler to sample from the joint posterior distribution. First we need

to derive the full conditional distributions. To ease notation, let H be the set of indices

i ∈ {1, . . . , k} such that Ii = 1 and T the set of indices i such that Ii = 2. The first

full conditional distribution is given by

π1(µ1|µ2, I, y) ∝ p(µ1)p(µ2) exp
(

− 1

2
(
∑

i∈H

(y(i) − µ1)
2 +

∑

i∈T

(y(i) − µ2)
2
)

∝ p(µ1) exp
(

− 1

2

∑

i∈H

(y(i) − µ1)
2
)

∝ exp
(

− 1

2
((µ1 − θ1)

2 +
∑

i∈H

(y(i) − µ1)
2
)

∝ exp
(

− 1

2
(|H|+ 1)

[

µ1 −
θ1 +

∑

i∈H y(i)

(|H|+ 1)

]2)

∼ N
(θ1 +

∑

i∈H y(i)

(|H|+ 1)
,

1

(|H|+ 1)

)

.

Analogously the second full conditional density π2(µ2|µ1, I, y) is the Normal den-

sity N
(

θ2+
∑

i∈T y(i)

(|T |+1) , 1
(|T |+1)

)

. Finally the third full conditional p.m.f. is given by

π3(I|µ1, µ2, y) ∝ exp
(

− 1

2
(
∑

i∈H

(y(i) − µ1)
2 +

∑

i∈T

(y(i) − µ2)
2)
)

∝
∏

i∈H

exp
(

− 1

2
(y(i) − µ1)

2
)

∏

i∈T

exp
(

− 1

2
(y(i) − µ2)

2
)

.

45

Downloaded by Colin Fox (colinfox373@gmail.com)

lOMoARcPSD|3708389

https://www.studocu.com/en-gb?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=st911-2012-2013-notes-part-iii


It follows that

P(Ii = 1|µ1, µ2, y) ∝ exp
(

− 1

2
(y(i) − µ1)

2
)

and

P(Ii = 2|µ1, µ2, y) ∝ exp
(

− 1

2
(y(i) − µ2)

2
)

and so

P(Ii = 1|µ1, µ2, y) =
exp(− 1

2 (y
(i) − µ1)

2)

exp(− 1
2 (y

(i) − µ1)2) + exp(− 1
2 (y

(i) − µ2)2)

= 1− P(Ii = 2|µ1µ2, y).

7.5 Swendsen-Wang algorithm

An example of data augmentation that has become very famous is the so-called Swendsen-

Wang algorithm that allows us to sample the Ising model even close to the critical tem-

perature. For each pair of neighbouring sites (i, j) it introduces an auxiliary variable

uij ∈ {0, 1}, the so-called bonds. The joint distribution of the Ising model and these

auxiliary variables is the so-called Fortuin-Kasteleyn model given by

π(x, u) ∝
∏

<i,j>∈E

(

1[uij=0]q + (1− q)1[uij=1]1[xi=xj ]

)

,

where q ∈ (0, 1) is a parameter of the model. Note that π(x, u) > 0 only for pairs

(x, u) such that for any i, j: if xi 6= xj then uij = 0.

Let N be the total number of edges and k(x) = |{(< i, j >∈ E : xi 6= xj}|. Now

choose β = − log(q)/2 > 0. Then the marginal distribution of X can be shown to be

an Ising model:

π(x) =
∑

u

π(x, u) ∝
∑

u

∏

<i,j>∈E

(

1[uij=0]q + (1− q)1[uij=1]1[xi=xj ]

)

=
∑

u

qk(x)
∏

<i,j>∈E:xi=xj

(

q1[uij=0] + (1− q)1[uij=1]

)

∝ qk(x)
N−k(x)
∑

s=0

(

N − k(x)
s

)

qs(1− q)N−k(x)−s

= exp
(

− 2βk(x)
)

= exp
(

β[(N − k(x))− k(x)]
)

= exp
(

β
∑

<i,j>∈E
xixj

)

.

To compute the marginal distribution of U first define

A(u) = {x : if uij = 1 then xi = xj}
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and note that if x /∈ A(u) then π(x, u) = 0. Now,

π(u) =
∑

x∈A(u)

π(x, u) ∝
∑

x∈A(u)

∏

<i,j>:uij=0

q +
∏

<i,j>:uij=1

(1− q)1[xi=xj ]

)

=
∏

uij=0

q
∏

uij=1

(1− q)2c(u)

We call neighbour sites i and j connected if uij = 1. In the above c(u) is the number

of connected components in the configuration u. The above model is the so-called

random cluster model.

The remarkable thing is that the conditional distributions are very simple indeed.

Given the values of the sites X = x, the distribution of bonds is given by

π(uij |xi, xj) ∝ q1[uij=0] + (1− q)1[uij=1]1[xi=xj ]

Thus if two neighbouring sites i and j have the same spin, that is xi = xj then we set

uij = 0 with probability q and uij = 1 otherwise. If i and j have different spin then

we set uij = 0 deterministically.

The conditional distribution of x given U = u is also easy. The distribution of spins

is uniform conditional on no connected sites having different spins as the following

computation shows. Note that we only need to consider x ∈ A as defined above.

π(x|u) ∝
∏

<i,j)>:uij=1

1[xi=xj ]. (2)

Thus we simply assign each connected cluster of sites the same spin, which is up-

wards with probability 1/2 and downwards otherwise. The Swendsen-Wang algorithm

is simply a Gibbs Sampler that samples x given u and u given x.

8 Reversible jump MCMC

This is a method that is applicable to problems when “one of the things we don’t know

is how many things we don’t know” (Prof. Green). There is a large collection of

problems for which we need to define models of variable dimension. Such problems

include model selection, model comparison and object recognition. For example we

have discussed mixture models. Often we don’t know how many components the mix-

ture contains and part of the inference should be to determine the most appropriate

number.

Consider the following general set-up. We have a collection of models:

Mk = {fk(·|θk), θk ∈ Θk}.

For example for mixture distributions the model Mk would be a mixture distribution

with k components. For each k we have a prior πk(θk) on the model parameters. This

defines a collection of posterior distributions conditional on the model index k

π(θk|k, x) ∝ πk(θk)fk(x|θk).
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We also have a prior ρ(k) on the model index k which can either be bounded above

(k ∈ {1, . . . ,K}) or there may be an infinite number of potential models (k ∈ N).

Given data x our target distribution is given by the posterior density

π(k, θk|x) ∝ ρ(k)π(θk|k, x).

This allows us to evaluate quantities such as the posterior probability for model Mk

given by

p(Mk|x) ∝
∫

Θk

ρ(k)π(θk|k, x)dθk.

To be able to sample a model of variable dimension the sampler needs to be able to

move within and between models. Moves within a model can be done using any of the

techniques discussed before, but moves between models of different dimension need a

new approach.

As with any MCMC algorithm discussed so far, we need to ensure detailed bal-

ance (and thus time-reversibility). If p(x, ·) is our transition kernel and π our target

distribution this boils down to the equation:

∫

A

∫

B

p(x, dy)π(x)dx =

∫

A

∫

B

p(y, dx)π(y)dy.

If qk(x, dy) is the proposal transition kernel that we use if the current state is a model

of type Mk and αk(x, y) is the appropriate acceptance probability, then

p(x,B) =
∑

k

∫

B

qk(x, dy
′)α(x, y′) + r(x)1B(x).

Here r(x) is the probability of a move from x being rejected. (Note that this is the usual

expression for the transition kernel of a Metropolis-Hastings chain, just that now we

also have to sum over all possible model indices k.) Now comes the technical (measure-

theoretical) bit. We need π(dx)qk(x, dy) to be absolutely continuous with respect to a

symmetric measure ξk(dx, dy) on Θ×Θ where Θ =
∑

k{k}∪Θk. Let gk(x, y) be the

density of qk(x, dy)π(dx) with respect to ξk(dx, dy) then the acceptance probability

αk(x, y) = min{1, gk(y, x)
gk(x, y)

}

ensures detailed balance as the following computations show:

∫

A

∫

B

αk(x, y)qk(x, dy)π(dx) =

∫

A

∫

B

αk(x, y)gk(x, y)ξk(dx, dy)

=

∫

A

∫

B

αk(y, x)gk(y, x)ξk(dy, dx)

=

∫

A

∫

B

αk(y, x)qk(y, dx)π(dy).

Green defined a method that avoids having to explicitly define the appropriate sym-

metric measure. This method is called reversible jump (or trans-dimensional) MCMC
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and is based on the following dimension matching criterion. First consider a move

from Mk to model Mj . The way we usually generate such a move is by sampling

a (possibly multivariate) variable u ∼ g(u) and proposing h1(θk, u) the value of the

deterministic function h1 evaluated at the current θk and u. Similary, to move from

model Mj to model Mk we sample v ∼ f(v) and propose θk = h2(θj , v) for some

deterministic function h2. The dimension matching criterion requires that

dim(θk, u) = dim(θj , v).

This means that there is a bijective function T such that

T (θk, u) = (θj , v).

Recall that our states are given by (i, θi) where i is the index of the model and θi are the

corresponding model parameters. Suppose the probability of proposing a move from

model k1 to model k2 is pk1k2
. Green then worked out that the appropriate probability

of accepting state (j, θj) where θj = h1(θk, u) given the chain is currently in state

(k, θk) is given by

α((k, θk), (j, θj)) = min
{

1,
π(j, θj |x)
π(k, θk|x)

pjkf(v)

pkjg(u)

∣

∣

∣

∂T (θk, u)

∂(θk, u)

∣

∣

∣

}

.

where the last factor is the absolute value of the Jacobian determinant of T and v is such

that θk = h2(θj , v). This is often called the Green-Hastings acceptance probability.

Example 23 Suppose we have two models: the first model M1 has parameter θ ∈ R

and the second model M2 has two parameters θ1, θ2 ∈ R. When we would like to

move from the second model to the first we may propose θ = (θ1 + θ2)/2. Thus to go

from the first model to the second model we can only use a univariate random variable

u. So suppose we sample u ∼ g(u) and set θ1 = θ − u and θ2 = θ + u. Then

dim(θ, u) = dim(θ1, θ2).

The Jacobian of T (θ, u) = (θ − u, θ + u) is

∣

∣

∣

∣

∂T (θ, u)

∂(θ, u)

∣

∣

∣

∣

=

∣

∣

∣

∣

1 −1
1 1

∣

∣

∣

∣

= 2

and so we accept the move from (1, θ) to (2, θ1, θ2) = (2, θ−u, θ+u) with probability

α((1, θ), (2, θ1, θ2)) = min{1, π(2, θ1, θ2)
π(1, θ)

p21
p12

2

g((θ2 − θ1)/2)
}.

As an exercise show that the probability of accepting a move from (2, θ1, θ2) to (1, θ) =
(1, (θ1 + θ2)/2) should be

α((2, θ1, θ2), (1, θ)) = min{1, π(1, θ)

π(2, θ1, θ2)

p12
p21

g((θ2 − θ1)/2)

2
}.
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Example 24 Suppose you have an iid sample y = (y1, . . . , yn). We believe that the

data is either from an Exponential distribution with parameter λ or from a Gamma(β,γ)

distribution. We choose the prior probabilities of each model equal to 0.5 and the fol-

lowing prior distributions for the model parameters:

λ ∼ Γ(a, b)

β ∼ Γ(c, d)

γ ∼ Γ(e, f).

First consider the posterior distribution conditional on the first model. We have

π((1, λ)|y) ∝ λn+a−1 exp(−λ(b+

n
∑

i=1

yi))

and so λ has a Gamma(n+ a− 1, b+
∑n

i=1 yi) distribution. Now consider the second

model and set z =
∏n

i=1 yi. We have

π(2, β, γ|y) ∝ βc−1 exp(−βd)γe−1 exp(−γf)
γnβ

Γ(β)n
zβ−1 exp(−γ

n
∑

i=1

yi), and so

π(β|2, γ, y) ∝ βc−1 exp(−βd)
γnβ

Γ(β)n
zβ−1

π(γ|2, β, y) ∝ γnβ+e−1 exp(−γ(f +

n
∑

i=1

yi))

Thus in Model 2, the full conditional distribution for γ is Gamma(nβ+e,f+
∑n

i=1 yi).
The full conditional distribution for β is non-standard, but we can use a Metropolis-

Hastings step to update β as follows. Choose some value ǫ > 0, then we choose a new

value β′ uniformly from the interval [β − ǫ, β + ǫ]. This may produce negative values

for β′ but we then simply reject β′. The acceptance probability is thus given by

α((2, β, γ), (2, β′, γ)) = 1[β′>0] min{1,
π(β′|2, γ, y)
π(β|2, γ, y) }

This specifies the within model moves, but we also need to specify the between

model moves. The easiest thing to do is to always propose the other model. Thus if

we are in model 1 we propose model 2 and vice versa. Now we need to decide how

to generate the parameters of the proposed model. A common approach is to choose

the parameters such that the models have the same mean as this will facilitate good

mixing properties between the model. This means if we have β and γ then we propose

λ = γ/β. This fully determines the dimensions and we need to use a univariate random

variables to generate values for β and γ given λ. One way of doing this is to sample

u ∼ Γ(c, d) and setting β = u and γ = λu. The corresponding Jacobian is given by

∣

∣

∣

∣

0 1
u λ

∣

∣

∣

∣
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which has a determinant equal to u. This means we have acceptance probabilities

α((1, λ), (2, β, γ)) = min{1,
π(2, β, λ|y)
π(1, λ|y)

1
dc

Γ(c)β
c−1 exp(−dβ)

β}

and

α((2, β, γ), (1, λ)) = min{1,
π(1, λ|y)

π(2, β, γ|y)

dc

Γ(c)β
c−1 exp(−dβ)

β
}

respectively.

The whole reversible jump algorithm now works as follows. Suppose the current

state of the chain is Xt = (1, λ) then we first perform a within model update followed

by a between model update:

1. Sample λ′ ∼ Gamma(n+ a− 1, b+
∑n

i=1 yi) and set Xt+1 = (1, λ′).

2. Sample u ∼ Gamma(c, d) and set β = u and γ = λ′u.

3. With probability

α((1, λ′), (2, β, γ)) = min{1, π(2, β, λ)
π(1, λ)

1
dc

Γ(c)β
c−1 exp(−dβ)

β}

set Xt+2 = (2, β, γ). Alternatively set Xt+2 = (1, λ′).

Similarly, suppose Xt = (2, β, γ), then perform the following steps.

1. Sample γ′ ∼ Gamma(nβ + e,f +
∑n

i=1 yi).

2. Sample β′ uniformly on [β − ǫ, β + ǫ]. With probability

α((2, β, γ′), (2, β′, γ′)) = 1[β′>0] min{1, π(2, β
′, γ′)

π(2, β, γ′)
}

set Xt+1 = (2, βt+1, γt+1) = (2, β′, γ′). Else set Xt+1 = (2, βt+1, γt+1) =
(2, β, γ′).

3. Set λ = γt+1/βt+1. Then with probability

α((2, βt+1, γt+1), (1, λ)) = min{1, π(1, λ)

π(2, βt+1, γt+1)

dc

Γ(c)β
c−1
t+1 exp(−dβt+1)

βt+1
}

set Xt+2 = (1, λ). Else set Xt+2 = Xt+1.

9 Simulated annealing, simulated tempering and par-

allel tempering

Consider a set of distributions πT (x) ∝ π(x)
1
T where T > 0. Borrowing termi-

nology from physics we call the scaling parameter T temperature. Now consider a
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Metropolis-Hastings algorithm with stationary distribution πT . For large T , that is at

hot temperatures, πT is relative flat and thus the MH-algorithm will find it easy to ex-

plore the support of πT . As T decreases, i.e. becomes colder, modes will become more

pronounced and it will be harder to explore the state space. As T decreases towards 0

the states visited by the chain will become concentrated around the local maxima of π.

9.1 Simulated tempering

Here we exploit the fact that for hotter distributions the corresponding Markov chains

tend to mix better. We use a finite number of temperatures T0 = 1 < T1 < . . . < Tm

which are used to define an augmented target distribution. We introduce an auxiliary

variable that denotes the index of the current temperature and define the augmented

target distribution as

π(x, j) ∝ cj πTj
(x)

We then design a Markov chain whose stationary distribution is the above augmented

target distribution. Given a run of the chain we then simply retain the states (xt, it) for

which it = 1 and this gives us a sample whose asymptotic distribution is π.

A chain whose invariant distribution is π(x, i) can now be designed as follows.

We alternate updates of the x component with updates of the temperature index i.
Suppose that the proposal kernel for the x component is defined via q(x, y). We define

a proposal probability mass function r(i, j) for the temperature index as follows:

r(i, i+ 1) = r(i, i− 1) =
1

2
for i ∈ {2, . . . ,m− 1}

r(m,m− 1) = r(1, 2) = 1.

The algorithm now works as follows. Suppose the current state of the chain is

Xt = (xt, it).

1. Sample I = j according to r(it, j).

2. Accept I = j and set it+1 = j with probability

α
(

xt, it, (xt, j)
)

= min{1, cjπTj
(xt)r(j, it)

citπTit
(xt)r(it, j)

}

Else set it+1 = it.

3. Sample Y = y from q(xt, y).

4. Accept Y = y and thus set xt+1 = y with probability

α
(

(xt, it+1), (y, it+1)
)

= min{1,
cit+1

πTit+1
(y)q(y, xt)

cit+1
πTit+1

(xt)q(xt, y)
}.

Else set xt+1 = xt.

5. Set Xt+1 = (xt+1, it+1).
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The idea of this approach is to exploit the fact that MCMC algorithms tend to mix

better in ”flatter” distributions. Whenever the chain visits a hot distribution it will be

easier for it to move from one part of the state space to another. Thus by the time it

returns to the cold target distribution it will have moved to a different region of the

space. For this to work efficiently it is generally recommended that the constants ci
are chosen such that the chain spends roughly the same amount of time in each of the

m temperatures. If πTi
is normalised then this will happen if all ci = 1. However, if

they are not normalised then ci should be equal to normalising constant of the corre-

sponding density/pmf. However, in this lecture course we have encountered numerous

distributions where MCMC was necessary for the very reason that we did not know the

normalising constant. The solution is to use approximations to the normalising con-

stants often based on trial runs or alternative use an adaptive algorithm. (If you would

like to find out more search for the keywords “logistic regression” or “Wang-Landau”

in the MCMC literature).

Another implementational issue of this method is how to choose the temperature

levels. There is a trade-off between having a sufficiently high acceptance probability

for moving from one temperature to another and not having too many temperature

levels. Again there is a vast amount of literature on this issue, notably in Physics.

9.2 Parallel tempering

Parallel tempering or Metropolis-coupled MCMC also uses different levels of temper-

atures. In contrast to simulated tempering it runs m chains in parallel such that the ith
chain has stationary distribution πTi

. After an update within each of the m chains we

pick a pair of chains and propose to swap their states. This is followed by a Metropolis-

Hastings accept/reject step to maintain the correct stationary distribution. Here is a

summary of the algorithm. Suppose the current state of the jth chain is X
(j)
t = x

(j)
t

for j ∈ {1, . . . ,m}. Then

1. For j ∈ {1, . . . ,m} sample Y (j) = y(j) according to qj(x
(j)
t , y(j)) and set

x
(j)
t+1 = y(j) with probability

α(x
(j)
t , y(j)) = min{1, πTj

(y(j))qj(y
(j), x

(j)
t )

πTj
(x

(j)
t )qj(x

(j)
t , y(j))

}.

Else set x
(j)
t+1 = x

(j)
t .

2. Choose i, j ∈ {1, . . . ,m} at random subject to i 6= j.

3. With probability

α(x
(i)
t+1, x

(j)
t+1) = min{1, πTi

(x
(j)
t )πTj

(x
(i)
t+1)

πTj
(x

(j)
t+1)πTi

(x
(i)
t+1)

}.

Set X
(i)
t+2 = x

(j)
t+1, X

(j)
t+2 = x

(i)
t+1 and X

(k)
t+2 = x

(k)
t+1 for k 6= i, j.
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The advantage of parallel tempering is that we do not have to estimate the normalizing

constants ci, but this comes at the cost of having m parallel chains. However, with

todays parallel computer technology this is not really a problem.

9.3 Simulated annealing

The simulated annealing algorithm is an optimisation technique that is strongly related

to the MCMC methods we have discussed so far. The aim of simulated annealing is

to find the location of the maximum of a function h(x). We can easily transform the

problem into finding the mode of a distribution by setting π(x) ∝ exp(h(x)). We

now run an MCMC algorithm but with a target distribution that changes with time. At

iteration t the target distribution is πT (t)(x) where T (t) → 0 as t → ∞. Note that it is

important that T (t) does not decrease too quickly towards 0 to avoid getting stuck in

a local mode. Temperature schemes for which convergence is assured can be found in

the literature.

Example 25 Suppose we would like to maximize

h(x) = [cos(50x) + sin(20x)]2 for x ∈ [0, 1].

Our MCMC algorithm proposes new values uniformly within distance r from the cur-

rent value of the chain. Thus if Xt = xt is the current state of the chain we produce

state Xt+1 as follows:

1. Sample Y = y uniformly from the interval (at, bt) where at = max{xt − r, 0}
and bt = min{xt + r, 1} and propose y as the new state.

2. Let a = max{y− r, 0} and b = min{y+ r, 1} then we accept y with probability

αt(xt, y) = min
{

1, exp
( 1

T (t)
(h(y)− h(xt))

)bt − at
b− a

}

.

If accepted set xt+1 = y, else set xt+1 = xt.

3. Reduce the temperature to T (t+ 1).

A suitable cooling scheme in this context would be T (t) = 1/ log(t).

A more complex example where the temperature is related to physical reality is the

Ising model. Below is a pseudo-code description of the algorithm.

Example 26

Initialize x and T
for t = 1 to N

for i ∈ S
d = β

∑

j:i∼j x
(i)x(j)

U ∼ Uniform(0,1)
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if log(U) < min{0,−2d/T} then

x(i) = −x(i)

T = T (t)

10 The EM algorithm

10.1 Introduction

The aim of the EM algorithm is to maximise the likelihood function in data augmenta-

tion problems, that is when data is missing or when the introduction of a latent variable

makes the likelihood function much simpler.

Similarly to what we discussed in the section on the data augmentation algorithm,

we assume that X = x is the observed data, Y = y the missing or latent data, and

Z = (x, y) the complete data. The “incomplete data” likelihood is given by

L(θ|x) = p(x|θ) =

∫

p(x, y|θ)dy.

Here, p(x, y|θ) is the joint probability density or mass function for the observed and

missing data and p(x|θ) is the appropriate marginal density/pmf for the observed data.

The integration step on the right hand side makes maximisation of the incomplete data

likelihood computationally difficult.

The “complete data” likelihood is given by

L(θ|x, y) = p(x, y|θ) = p(x|θ)p(y|x, θ).

Note that

p(x|θ) =
p(x, y|θ)
p(y|x, θ) ,

so we can write the incomplete data log-likelihood as

l(θ|x) = l(θ|x, y)− log
(

p(y|x, θ)
)

.

This is of course conditional on Y = y. Assume θ(i) is an approximation on θ and take

expectations with respect to the conditional distribution of Y given x and θ(i). Then

we can write

l(θ|x) = EY |x,θ(i)

(

l(θ|x, y)
)

− EY |x,θ(i)

(

log(p(y|x, θ))
)

= Q(θ, θ(i))−H(θ, θi). (3)

Example 27 Censored Normal data:

Suppose z = {z1, . . . , zn} is iid N (µ, 1). We observe the censored data x = {x1, . . . , xn} =
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{z11[z1>0], . . . , zn1[zn>0]}. Assume m is such that xk > 0 for 1 ≤ k ≤ m and xk = 0
for m+ 1 ≤ k ≤ n. The incomplete data likelihood is then given by

L(µ|x) =
m
∏

k=1

φ(xk − µ)
n
∏

k=m+1

Φ(−µ),

where φ is the pdf of a standard Normal distribution and Φ is the corresponding cdf.

The complete data likelihood is given by

L(µ|x, y) =

m
∏

k=1

φ(xk − µ)

n
∏

k=m+1

φ(yk − µ)1[yk≤0].

Note that
∫

L(µ|x, y)dy = L(µ|x).

Now assuming ym+1, . . . yn are less or equal to zero we have

l(µ|x, y) = −1

2

m
∑

k=1

(xk − µ)2 − 1

2

n
∑

k=m+1

(yi − µ)2 (+ log(c))

and so

Q(µ, µ(i)) = EY |x,µ(i)

(

l(θ|x, y)
)

= −1

2

m
∑

k=1

(xk − µ)2 − 1

2

n
∑

k=m+1

EY |x,µ(i)

(

(Yk − µ)2
∣

∣

∣ Yk ∼ N (µ(i), 1), Yk ≤ 0
)

.

We will use the notation

Eµ(i),0

(

f(Y )
)

= EY |x,µ(i)

(

f(Y )
∣

∣

∣
Y ∼ N(µ

(i), 1), Y ≤ 0
)

.

Now, under appropriate regularity conditions, the argument θ that maximises the

incomplete data log-likelihood is a root of the following derivative

∂l(θ|x)
∂θ

=
∂Q(θ, θ(i))

∂θ
− ∂H(θ, θ(i))

∂θ
.

The partial derivatives of H(θ, θ(i)) can be shown to be zero if θ = θ(i), so for now

we concentrate on finding the roots of the partial derivatives of Q(·, θ(i)). The EM-

algorithm is an iterative procedure that proceeds as follows:

1. Set an initial value θ(0) and then iterate the following two steps:

2. E-step:

Compute the expectation

Q(θ, θ(i)) = EY |x,θ(i)

(

l(θ|x, y)
)

=

∫

log(p(x, y|θ))p(y|x, θ(i))dy.
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3. M-step:

Maximise Q(θ, θ(i)) and set

θ(i+1) = argmaxθ Q(θ, θ(i)).

Example 28 Censored Normal distribution continued:

E-step:

Q(µ, µ(i)) = −1

2

m
∑

k=1

(xi − µ)2 − 1

2

n
∑

k=m+1

Eµ(i),0

(

(Yi − µ)2
)

.

M-step:

∂Q(µ, µ(i))

∂µ
=

m
∑

k=1

(xi − µ)− 1

2

n
∑

k=m+1

Eµ(i),0

(∂(Yk − µ)2

∂µ

)

=
(

m
∑

k=1

xi

)

−mµ+

n
∑

k=m+1

Eµ(i),0

(

Yk − µ
)

=
(

m
∑

k=1

xi

)

−mµ+ (n−m)
(

Eµ(i),0

(

Yn

)

− µ
)

.

The latter expression is zero if

µ =
1

n

(

m
∑

k=1

xi + (n−m)Eµ(i),0

(

Yn

))

,

so we set

µ(i+1) =
1

n

(

m
∑

k=1

xi + (n−m)
(

µ(i) − φ(−µ(i))

Φ(−µ(i))

))

as

Eµ(i),0

(

Yn

)

= µ(i) − φ(−µ(i))

Φ(−µ(i))
.

Lemma 9 In each iteration the EM-algorithm increases the likelihood L(θ|x), that is

L(θ(i+1)|x) ≥ L(θ(i)|x).

It follows that, under mild regularity conditions, the EM-algorithm converges to a local

maximum of the likelihood function. To prove the above lemma we recall Jensen’s

inequality which implies the following result:

Lemma 10

Eg

(

log
(f(X)

g(X)

))

≤ 0.
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Proof of Lemma 9:

As θ(i+1) = argmax Q(θ, θ(i)) it follows that

Q(θ(i+1), θ(i)) ≥ Q(θ(i), θ(i))

Moreover,

H(θ, θ(i)) = EY |x,θ(i)

(

log(p(y|x, θ))
)

=

∫

log(p(y|x, θ))p(y|x, θ(i))dy.

and so by the above lemma

H(θ(i+1), θ(i))−H(θ(i), θ(i)) =

∫

log
(p(y|x, θ(i+1))

p(y|x, θ(i))
)

p(y|x, θ(i))dy ≤ 0.

Hence

l(θ(i+1)|x)− l(θ(i)|x) = Q(θ(i+1), θ(i))−Q(θ(i), θ(i))

−
(

H(θ(i+1), θ(i))−H(θ(i), θ(i))
)

≥ 0.

Example 29 Normal mixture distribution:

Consider data x = {x1, . . . , xn} which is assumed to be independent and identically

distributed according to the mixture density

p(·|θ) =

m
∑

j=1

αj pj(·|µj)

where pj(·|µj) is a Normal density with mean µj and variance 1,
∑m

j=1 αj = 1 and

0 < αj < 1 for all j ∈ {1, . . . ,m}. Let θ = (α1, . . . , αm, γ1, . . . γm). Then the

incomplete data log-likelihood is given by

log(L(θ|x) =

n
∑

k=1

log
(

m
∑

j=1

αjpj(xk|µj)
)

.

We introduce auxiliary (or latent variables) y such that for k ∈ {1, . . . , n} and j ∈
{1, . . .M}

ykj =

{

1 if xk ∼ pj(·|µj)
0 otherwise

The complete data log-likelihood is now given by

l(θ|x, y) = l(θ|x, y) =

n
∑

k=1

m
∑

j=1

ykj log
(

αjpj(xk|µj)
)

.

For the E-step set

t
(i)
kj = P

(

Ykj = 1|x, θ(i)
)

=
α
(i)
j pj(xk|µ(i)

j )
∑m

l=1 α
(i)
l pl(xk|µ(i)

l )
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and note that
m
∑

j=1

t
(i)
kj = 1.

Hence,

Q(θ, θ(i)) =

n
∑

k=1

m
∑

j=1

EY |x,θ(i)(Ykj) log
(

αjpj(xk|µj)
)

=
n
∑

k=1

m
∑

j=1

t
(i)
kj log(αj) +

n
∑

k=1

m
∑

j=1

t
(i)
kj pj(xk|µj)

= A+B

Now consider the M-step in which we determine θ(i+1) = argmaxθ Q(θ, θ(i)). In the

above equation we can maximise A and B seperately. To maximise A use a Lagrange

multiplier λ to impose the constraint
∑m

j=1 αj = 1.We need to determine the roots of

∂

∂αj

[

m
∑

j=1

n
∑

k=1

t
(i)
kj log(αj)− λ

(

m
∑

j=1

αj − 1
)]

.

We deduce that

α
(i+1)
j =

1

n

n
∑

k=1

t
(i)
kj .

Next we need to maximise

B =

n
∑

k=1

m
∑

j=1

t
(i)
kj pj(xk|µj)

with respect to µ1, . . . , µm. We have

∂

∂µj

(

n
∑

k=1

m
∑

j=1

t
(i)
kj log(pj(xk|µj))

)

=

n
∑

k=1

t
(i)
kj (xk − µj)

and so

µ
(i+1)
j =

1

n

n
∑

k=1

t
(i)
kj xk.

10.2 EM Standard Errors

From statistical theory we know that under mild regularity conditions, the maximum

likelihood estimator θ̂ is asymptotically Normal with mean θ and variance-covariance

matrix I−1(θ) where I(θ) is the Fisher information about θ defined as

I(θ) = EX

(

− ∂2l(θ|x)
∂θ2

)

= EX

([

− ∂2l(θ|x)
∂θ

]2)

.
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In a missing data set-up we can exploit the following equality:

l(θ|x) = Q(θ, θ(i))−H(θ, θ(i)) and so

∂2l(θ|x)
∂θ2

=
∂2Q(θ, θ(i))

∂θ2 |
θ(i)=θ

− ∂2H(θ, θ(i))

∂θ2 |
θ(i)=θ

Now note that

∂H(θ, θ(i))

∂θ |
θ(i)=θ

=
∂

∂θ
EY |x,θ(i)

(

log(p(y|x, θ))
)

|
θ(i)=θ

= 0 and so

∂2H(θ, θ(i))

∂θ2 |
θ(i)=θ

=
∂2

∂θ2
EY |x,θ(i)

(

log(p(y|x, θ))
)

|
θ(i)=θ

= −EY |x,θ(i)

([ ∂

∂θ
log(p(y|x, θ))

]2)

|
θ(i)=θ

= −VarY |x,θ(i)

( ∂

∂θ
log(p(y|x, θ))

)

|
θ(i)=θ

It follows that

∂2l(θ|x)
∂θ2

=
∂2Q(θ, θ(i))

∂θ2 |
θ(i)=θ

+VarY |x,θ(i)

( ∂

∂θ
log(p(y|x, θ))

)

|
θ(i)=θ

Example 30 Censored Normal Distribution:

Q(µ, µ(k)) = −1

2

m
∑

i=1

(xi − µ)2 − 1

2

n
∑

i=m+1

Eµ(k),0

(

(Yi − µ)2
)

∂2Q(µ, µ(k))

∂µ2
= −m− (n−m) = −n.

Moreover,

−∂2H(µ, µ(k))

∂µ2
= VarY |x,µ(k)

(∂ log(p(Y |x, µ))
∂µ

)

|
µ(k)=µ

log(p(y|x, µ)) = log
(

n
∏

i=m+1

φ(yi − µ)
)

− (n−m) log(Φ(−µ))

= −1

2
log(2π)− 1

2

(

n
∑

i=m+1

(yi − µ)2
)

− (n−m) log(Φ(−µ)),
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and so

∂ log(p(y|x, µ))
∂µ

=

n
∑

i=m+1

(yi − µ)− (n−m)
∂ log(Φ(−µ))

∂µ
, hence

VarY |x,µ(k)

(∂ log(p(Y |x, µ))
∂µ

)

=

n
∑

i=m+1

VarY |x,µ(k)(Y )

= (n−m)
[

1− φ(−µ)

Φ(−µ)

( φ(−µ)

Φ(−µ)
+ µ

)]

.

It follows that the variance of the MLE θ̂ is approximately equal to

1

n− (n−m)[1− φ(−µ)
Φ(−µ) (

φ(−µ)
Φ(−µ) + µ)]

.

10.3 Extensions of the EM algorithm

1. Monte Carlo EM:

This may be used if the direct evaluation of Q and thus the E-step is computa-

tionally difficult. We use Monte Carlo estimation to approximate Q. At iteration

i the E-step is thus replaced by sampling y1, . . . , yn iid from p(y|x, θ(i−1) and

setting

Q(θ, θ(i−1)) =
1

m

n
∑

j=1

log(L(θ|yj , x)).

2. Generalized EM:

Here instead of maximising Q we simply find a θ(i+1) such that

Q(θ(i+1), θ(i)) > Q(θ(i), θ(i)).
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