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This article presents a method for generating samples from an unnormalized posterior
distribution f(·) using Markov chain Monte Carlo (MCMC) in which the evaluation of
f(·) is very difficult or computationally demanding. Commonly, a less computationally
demanding, perhaps local, approximation to f(·) is available, say f∗

x (·). An algorithm is
proposed to generate an MCMC that uses such an approximation to calculate acceptance
probabilities at each step of a modified Metropolis–Hastings algorithm. Once a proposal
is accepted using the approximation, f(·) is calculated with full precision ensuring con-
vergence to the desired distribution. We give sufficient conditions for the algorithm to
converge to f(·) and give both theoretical and practical justifications for its usage. Typical
applications are in inverse problems using physical data models where computing time is
dominated by complex model simulation. We outline Bayesian inference and computing
for inverse problems. A stylized example is given of recovering resistor values in a network
from electrical measurements made at the boundary. Although this inverse problem has
appeared in studies of underground reservoirs, it has primarily been chosen for pedagogical
value because model simulation has precisely the same computational structure as a finite
element method solution of the complete electrode model used in conductivity imaging, or
“electrical impedance tomography.” This example shows a dramatic decrease in CPU time,
compared to a standard Metropolis–Hastings algorithm.
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1. INTRODUCTION

This article presents a method for generating samples from an objective function f(·)
(e.g., an unnormalized posterior distribution) using MCMC sampling, when evaluation of
f(·) is highly computationally demanding. Examples of these occur in Bayesian image
reconstruction or inverse problems where simulation of the measurements, and hence cal-
culation of the likelihood, requires numerical implementation of a complex data model.
Such inverse problems occur in imaging from strong wave scattering where simulation of
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the wave field requires solving a system of partial differential equations, and includes elec-
trical impedance tomography (Fox and Nicholls 1997; Vauhkonen, Vauhkonen, Savolainen,
Kaipio 1999; Kaipio, Kolehmainen, Somersalo, and Vauhkonen 2000; Andersen, Brooks,
and Hansen 2003) ultrasound imaging (Greenleaf 1983; Fox and Nicholls 1998; Huttunen
et al. 2004), inverse obstacle scattering (Kress and Rundell 1998), and optical diffusion
tomography (Arridge 1999), among many other imaging modalities. In all these examples
a far simpler (less computationally demanding), perhaps local, approximation to f(·) is
available, that we denote f∗

x(·). In the imaging problems mentioned, such approximations
are typically based on a local or global linearization of the forward map, or coarsening
of the representation of unknowns. In this article we are particularly interested in the lo-
cal linearizations typically first derived for use in gradient-based optimization algorithms
implementing regularized inversion (see references above), though our algorithm could
work with any approximation. A local linear approximation to the forward map typically
corresponds to a local Gaussian approximation to the likelihood and posterior distribution.

Fox and Nicholls (1997) proposed an algorithm to generate an MCMC using an ap-
proximate forward map, and hence likelihood, to calculate the acceptance probabilities at
each step of a Metropolis–Hastings algorithm. Once a proposal is accepted, the likelihood
is calculated with full precision, and cost. Examples were shown in the field of conductivity
imaging for which calculation of the likelihood involves numerically solving a PDE with
boundary conditions. The algorithm was tested with some examples exhibiting correct be-
havior in reasonable settings. In particular, for one example, they reported that 99.4% of
the moves were rejected, implying that at only .6% of the proposed moves was the “exact”
likelihood actually calculated. Calculating the approximate likelihood represented about
1% of the cost of calculating the likelihood with full precision. This means that Fox and
Nicholls’s (1997) algorithm represents approximately 1.6% of the cost of the corresponding
standard Metropolis–Hastings MCMC. However, Fox and Nicholls (1997) did not prove
the ergodic properties of their MCMC, and justified its adequacy in terms of particular
examples. Indeed, because an approximation to the target distribution was used to calculate
acceptance probabilities, it is not clear that the resulting chain necessarily has a stationary
distribution.

In this article we formalize Fox and Nicholls’s (1997) algorithm, in a general setting
and, with a modification, obtain the correct ergodic characteristics for the resulting MCMC.
Section 2 presents our algorithm and Section 3 explains its limiting and performance char-
acteristics. Sections 4 and 5 outline the statistical and computational issues encountered
in inverse problems and present an example where we compare the standard Metropolis–
Hastings algorithm with ours, where a local linear approximation to the forward map is
used. A discussion of the article is given in Section 6.

2. THE ALGORITHM

We construct a Metropolis–Hastings MCMC using the approximation f∗
x(·). The idea of

the algorithm is the following. Consider a proposal distribution q(y | x). To avoid calculating
f(y) for proposals that are rejected, we first “correct” the proposal with the approximation
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f∗
x(y) to create a second proposal distribution q∗(y | x), to be used in a standard Metropolis–

Hastings algorithm. This second proposal has, in general, a high acceptance probability. In
other words, the original proposal is tested using the cheap approximation to find moves
that are likely to be accepted. We thereby sample from f(·), but avoid calculating f(y)
when proposals are rejected by f∗

x(y), and hence gain in computational efficiency. See
Section 3 and Theorem 1 for regularity conditions on f∗

x(·) to assure that Algorithm 1
creates a Markov chain with limiting distribution f(·).

Algorithm 1.
1. At x(t) generate a proposal y from q(· | x(t)).
2. Let

g(x, y) = min

{
1,
q(x | y)
q(y | x)

f∗
x(y)
f∗

x(x)

}
.

With probability g(x(t), y), “promote” y to be used as a proposal for the standard
Metropolis–Hastings algorithm. Otherwise use y = x(t) as a proposal. The actual
proposal distribution used is

q∗(y | x) = g(x, y)q(y | x) + (1 − r(x))δx(y)

where r(x) =
∫
g(x, y)q(y | x)dy and δx(·) denotes the Dirac mass at x (e.g., see

Robert and Casella 1999, p. 235).
3. Let

ρ(x, y) = min

{
1,
q∗(x | y)
q∗(y | x)

f(y)
f(x)

}
.

With probability ρ(x(t), y) accept y setting x(t+1) = y. Otherwise reject y setting
x(t+1) = x(t). This defines a transition kernelK(·, ·) from x(t) to x(t+1).

Note (as is also the case in the standard Metropolis–Hastings algorithm) that there is
never a need to calculate r(x) in Algorithm 1. When y = x(t) (i.e., the proposal was not
promoted) ρ(x, y) = 1 and the chain remains at the same point. Conversely when x /= y,
q∗(y | x) = g(x, y)q(y | x).

The reduction in computational work occurs because only when y is promoted (Step
2) is f(y) evaluated to calculate ρ(x, y). For a special type of objective and approximation
functions that typically occur in inverse problems, we prove in Section 3 that ρ(x, y) is
close to 1, depending on the quality of the approximation, and therefore we only update
our approximation for proposals with a high probability of being accepted, thus avoiding
unnecessary calculations of f(·). Section 3 investigates regularity conditions on q(y | x)
and f∗

x(·) to achieve convergence of the MCMC to f(·).
As explained earlier, Fox and Nicholls (1997) used a similar algorithm in which they

simply accepted all promoted y’s (in our terms, they had ρ(x, y) ≡ 1). Their algorithm
showed good convergence properties for particular examples and was used without a guaran-
tee of convergence. However, provided the approximation used is good so that ρ(x, y) ≈ 1,
Fox and Nicholls’s algorithm may be regarded as an approximation to ours. Algorithm 1
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improves on Fox and Nicholls’s by having the correct limiting distribution with virtually
identical computational cost.

Elements of Algorithm 1 may also be found in Liu’s (2001) “surrogate transition
method” which also highlights the utility of approximations to log f(·) when simulating a
complex physical problem. However, it does not include a state-dependent approximation,
which is an important aspect of Algorithm 1 because that case commonly occurs in efficient
computational approximations to nonlinear problems. Interestingly, Liu suggested taking
multiple steps with the approximate distribution before correcting with the exact distribu-
tion. It is not clear how such a procedure would perform in the presence of a state-dependent
approximation. However forming a hierarchy of “promoted” proposals using a sequence of
increasingly better approximations may be a valuable generalization.

There are also interesting parallels between Algorithm 1 and the “delayed rejection”
algorithms of Tierney and Mira (1999) and Green and Mira (2001). In delayed rejection
a second, perhaps modified, proposal is attempted following a rejection, with a modified
acceptance probability that ensures detailed balance for the composite step. The primary
aim of delayed rejection is to increase statistical efficiency, though some examples showed
a rather small improvement in computational efficiency (Green and Mira 2001). Algorithm
1 similarly uses a composite step with a modified acceptance probability ensuring detailed
balance, though it focusses on reducing computation per acceptance and requires two ac-
cept/reject steps to achieve an acceptance. In this spirit we may call Algorithm 1 “delayed
acceptance.” It seems likely that Algorithm 1 and delayed rejection could be combined for
particular examples to significantly increase both statistical and computational efficiency,
over standard Metropolis–Hastings dynamics.

3. LIMITING AND PERFORMANCE CHARACTERISTICS

We prove the following theorem that, given an f -irreducible Metropolis–Hastings al-
gorithm with proposal distribution q(x | y), establishes regularity conditions on f∗

x(y) in
Algorithm 1 to achieve convergence properties in the resulting MCMC.

Theorem 1. If the Metropolis–Hastings algorithm with q as a proposal (kernel
Kq(·, ·)) is f -irreducible, q is reversible and q(y | x) > 0 implies f∗

x(y) > 0, then f is an
invariant distribution forK andK is f -irreducible. Moreover, if for any x,Kq(x, x) > 0,
thenK(x, x) > 0, and the resulting chain is strongly aperiodic.

Proof: Let x with f(x) > 0, andA with
∫

A
f(x)dx > 0. We have thatKn

q (x,A) >
0, for some integer n. This implies that there exist x(1) = x, x(2), . . . , x(n) ∈ A with
Kq(x(t), x(t+1)) > 0. Without loss of generality we may assume that x(t) /= x(t+1), and
thus we have ρq(x(t), x(t+1))q(x(t+1) | x(t)) > 0 and ρq(x(t+1), x(t))q(x(t) | x(t+1)) >

0, where ρq(x, y) = min
{

1, f(y)
f(x)

q(x|y)
q(y|x)

}
. From the conditions on f∗

z (·) we see that

ρ(x(t), x(t+1))q∗(x(t+1) | x(t)) > 0 for t = 1, 2, . . . , n− 1, which impliesKn(x,A) > 0.
For the second part of the proof, note that ρq(x, y) > 0 implies ρ(x, y) > 0. Therefore
if

∫
ρq(x, y)q(y | x)dy < 1, r(x) < 1 and K(x, x) > 0. Otherwise, if

∫
ρq(x, y)q(y |
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x)dy = 1, q(x | x) > 0 and K(x, x) > q∗(x | x) = q(x | x) > 0. It follows from
reversibility that f is an invariant distribution forK. ✷

With the f -irreducibility and aperiodicity of the chain we may use standard ergodic
results (see, e.g., Robert and Casella 1999, p. 237) to prove that Algorithm 1 produces
simulations from f .

For a particular case of objective functions typically encountered in inverse problems
(see Section 4), the following theorem states bounds for the acceptance probability ρ(x, y).

Theorem 2. Assume that f(x) ∝ e−h(x) and that f∗
x(y) ∝ e−h∗

x(y), |h∗
x(y)−h(y)| <

C|x − y|P , for C > 0 and P ≥ 0, where h(x) = h∗
x(x) is uniformly continuous. If

g(x, y) ≤ e−2C|x−y|P or g(y, x) ≤ e−2C|x−y|P , then ρ(x, y) ≥ e−C|x−y|P .
Proof: If g(x, y) = 1 and g(y, x) < 1, or g(x, y) < 1 and g(y, x) = 1, it is easy to

see that ρ(x, y) = min{1, r} where r = f(y)
f∗

x (y) or
f∗

y (x)
f(x) , respectively. Given the Lipschitz

condition on h∗
x(y) we have

e−C|x−y|P ≤ r ≤ eC|x−y|P , (3.1)

and therefore ρ(x, y) ≥ e−C|x−y|P . Now, g(x, y) < 1 implies g(x, y) = q(x|y)
q(y|x)

f∗
x (y)
f(x) . In

order to have g(y, x) = 1 we need 1 < q(y|x)
q(x|y)

f∗
y (x)

f∗(y) = g(x, y)−1 f∗
x (y)

f∗(x)
f∗

y (x)
f∗(y) or g(x, y) <

f∗
x (y)

f∗(x)
f∗

y (x)
f∗(y) . To achieve this we only need g(x, y) ≤ e−2C|x−y|P , and equivalently for the

case when g(x, y) = 1 and g(y, x) < 1. ✷

We see that ρ(x, y) is close to 1 when the approximation used is good. If both g(x, y)
and g(y, x) are close (or equal) to 1, it may also be proved, depending on the smoothness of
the objective function, that ρ(x, y) is similar to the acceptance probability using the original
proposal q. However, there will always be pathological cases using bad approximations for
which Algorithm 1 will not be of any benefit.

Because both K and Kq have the same invariant distribution and are derived from
the same proposal distribution, K is dominated by Kq off the diagonal since, as Peskun
(1973) established, Kq is maximal among such kernels. (This also follows directly from
g(x, y) ≤ 1.) As these kernels are also reversible it follows (Peskun 1973; Tierney 1998) that
the asymptotic variance of sample averages calculated using Algorithm 1 are greater than or
equal to those calculated using the standard Metropolis–Hastings algorithm. Therefore, in
general, Algorithm 1 will be less statistically efficient than the standard Metropolis–Hastings
algorithm.

However, a good approximation will give an algorithm that is more computationally
efficient, that is, will achieve a smaller sample variance for given CPU time. Consider
the ideal case where the computational cost of the approximation is negligible compared
to the cost of the exact calculation occurring in Step 3 of Algorithm 1, or in the stan-
dard Metropolis–Hastings algorithm. When the approximation is good, hence ρ ≈ 1, the
speedup of Algorithm 1 over the standard Metropolis–Hastings algorithm is the inverse of
the acceptance rate. Thus, Algorithm 1 is most useful when the rejection ratio is high. How-
ever, incorrect classification of proposals by the approximation leads to lower statistical
efficiency, thereby reducing the speedup of variance reduction per CPU time. These simple



800 J. A. CHRISTEN AND C. FOX

considerations are sufficient to explain the speedup achieved in the computational example
in Section 5.

4. INVERSE PROBLEMS, BAYESIAN INFERENCE, AND
COMPUTATION

Inverse problems occur when observed data d depend on unknowns x via a measure-
ment process, and we want to recover x from d. In a mathematical setting, we represent
the measurement process by a family of models parameterized by x, where all necessary
parameters are contained in x, including “nuisance parameters.” In the language of inverse
problems, simulation of the model for given x defines the forward map A : x �→ d giving
data in the absence of errors.

The term “inverse problem” is usually reserved for cases where the mapping from x
to d is a complex physical relationship and where inversion of the forward map presents
special difficulties. As mentioned above, examples of inverse problems include the various
modalities of imaging from wave scattering used in noninvasive medical diagnostics, geo-
physical prospecting, and industrial process monitoring. The stylized example presented
later, of imaging resistors in a network, comes from this class. Inverse problems also occur
in a myriad of other settings such as inverse spectral problems (determining internal struc-
ture or shape from resonance frequencies), interferometric imaging, and mapping of flows
subject to physical laws, to name just a few.

The classical, or deterministic, inverse problem is to invert the the functionA to obtain
unknowns x in terms of data d. Studies in classical inverse problems typically center on
determining whether or not the inverse problem is well-posed in the sense (of Hadamard)
that: a solution x exists for any d, that solution is unique, and the inverse map d �→ x is
continuous. Practical inverse problems are usually ill-posed by failing the first or second
requirement, while idealized inverse problems in which all possible measurements are made
usually fail the last and hence are unstable, that is, small changes in data d cause large or
unbounded changes in recovered value(s) x. This latter property is routinely displayed by
least-squares or maximum likelihood solutions to inverse problems, including in the limit of
infinite number of data. For many inverse problems this behavior can be understood math-
ematically when the forward map is compact, implying that the inverse is discontinuous.
Classical inversion consists of applying a regular approximation to the inverse.

The ubiquitous presence of measurement errors, or noise, means that a practical mea-
surement process is probabilistic, and the inverse problem is naturally a problem in statistical
inference. To fix ideas, consider additive noise n with density function fN (n). Then the
likelihood for data d given x is

l(d|x) = fN
(
d−A(x)

)
,

since the Jacobian determinant for the change of variables from n to d is 1. Most com-
monly the measurement error has an exponential family or Gibbs distribution (Kaipio and
Somersalo 2004).
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In a Bayesian formulation, inference about x is based on the posterior density

f(x|d) ∝ l(d|x)p(x),

where p(x) denotes the prior density modeling beliefs about the unknown x independent
of the data d. Exploratory analyses typically employ a low-level (e.g., pixel or voxel)
representation with a Gibbs-MRF prior (Geman and Geman 1984). Classical inversion
may be viewed as a special case because regularized inverses are the same as maximum a
posteriori (MAP) estimates with regularization functionals that almost always correspond
to a proper (or improper) Gibbs distribution prior written as the exponential of minus a
norm (or semi-norm) of the unknown x. The most frequently used posterior density thus
has the form

f(x|d) ∝ exp
{−χ (

d−A(x)
) − ρ (x)

}
, (4.1)

where χ and ρ are relatively simple functions. For example, χ(y) = yTB−1y/2 when the
noise comes from a Gaussian process with known covariance matrixB (and d is written as a
vector), while ρ is an energy function computable as a sum of potentials defined over cliques
of the pixel graph whenx is modeled using a MRF. This is the form of objective functions for
which we developed Theorem 2 with h(x) = χ

(
d−A(x)

)
+ ρ (x) and the approximation

to f resulting from an approximation to A. As in the field of image analysis, geometric
information about the unknowns may be included using a prior based on an intermediate-
level representation, such as Nicholls’s (1998) continuum triangulation of the plane (see,
e.g., Andersen et al. 2003), or using a high-level representation of the type introduced by
Grenander and Miller (1994). In all these analyses, the key computational features are that
the state variable x comes from a very high-dimensional space, and computing the posterior
density is dominated by an expensive calculation of A(x).

In principle, the posterior density in Equation (4.1) can be evaluated and hence sam-
pled via MCMC allowing summary statistics to be evaluated, effectively solving the inverse
problem. Indeed a basic advantage of statistical (or optimization-based) solutions to inverse
problems is thatA−1 is not required, while the ability to apply MCMC is a major advantage
of the statistical approach because of the range of image representations and prior distri-
butions that may be used. However, the need to calculate the posterior density at each step
in a standard Metropolis–Hastings algorithm, with typically many thousands or millions
of steps required to give sufficiently small variance in estimates, appears to be computa-
tionally prohibitive for realistic inverse problems. However, there are a few demonstrations
of comprehensive posterior sampling, conditioned on measured data, for inverse problems
implementing a physically based forward simulator. Recent examples include the work by
McKeague, Nicholls, Speer, and Herbei (2005) mapping ocean circulation, Haario et al.
(2004) recovering atmospheric gas density, and Cornford, Csató, Evans, and Opper (2004)
who retrieved fields of wind vectors.

The massive scale of computation in each of these examples indicates that consider-
able improvement in efficiency of MCMC algorithms for inverse problems is required if
the method is to be widely applied. Indeed, each of the works cited employs an enhanced
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MCMC to improve computational efficiency. For example, Haario et al. (2004) used a novel
adaptive Metropolis algorithm in which the covariance matrix in a d-dimensional Gaussian
proposal distribution is calculated from the history of the output chain. The resulting chain is
not Markov, but is provably ergodic with the desired equilibrium distribution. Another inter-
esting development is the Metropolis coupled MCMC of Higdon, Lee, and Holloman (2003)
that simultaneously runs chains with the spatial parameters coarsened to various degrees.
Information from the faster running, though approximate, coarse formulations speeds up
mixing in the finest scale chain, from which samples are taken. These enhancements largely
focus on improving proposal distributions and hence mixing.

We think of Algorithm 1 as reducing the computational cost per step by drawing on
computational efficiencies developed for gradient ascent algorithms. In that field many so-
phisticated ideas have been developed, such as local linear or quadratic approximations,
trust regions, search directions or subspaces (see, e.g., Nocedal and Wright 1999), all in an
attempt to reduce the computational burden of having to calculate a complex function at
each of many iterations. In this aspect, numerical optimization shares many of the goals and
problems of computational MCMC for inverse problems. We expect the use of local linear,
or higher order, approximations to be most useful in Algorithm 1. We find appealing the
feature that computer implementation of Algorithm 1 requires the same problem-specific
functions required for a gradient-based optimization, so the effort in making the optimization
efficient may be used to also increase efficiency of the MCMC. We expect that other tech-
niques developed in computational optimization can be adapted to speed up sample-based
inferential solutions to inverse problems.

5. AN ELECTRICAL NETWORK TEST PROBLEM

We consider recovering the positive resistance values in a square network of resistors,
from noisy measurements made at the boundary of the network. We choose this example
because the resulting computational problem allows us to concisely demonstrate Algorithm
1, while having the same structure as the discreticized equations for electrical impedance
tomography (EIT). The correspondence is exact in the limit of fine discretization or large
network. The “complete electrode” forward model for EIT and its discretization, calibrated
against data, was given by Kaipio et al. (2000), while references contained therein provide
examples of attempted inversion from measured data.

5.1 NODAL EQUATIONS

LetZN = {(i, j) : 1 ≤ i, j ≤ N+1} denote the (N+1)×(N+1) integer lattice. We
refer to the elements of ZN as the nodes of the network. Nodes (i, j) and (k, l) are adjacent
when (i − k)2 + (j − l)2 = 1, that is, the usual first-order adjacency. Nodes (i, j) with
i, j = 1, N+1 are on the boundary, while all others are in the interior. Letn = (N+1)2 and
g : {1, 2, . . . , n} → ZN be any one-to-one function, that is, an ordering of the nodes. We
say that node g(i) is indexed by i, and will use the index to refer to the node. The dual lattice
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Figure 1. The resistor network for the case N = 4. Also shown are the reference node and current being injected
at one node on the boundary.

to the lattice of nodes isDN = {(l,m) : 1 ≤ l,m ≤ N + 1 with g(l) and g(m) adjacent}.
In a network of resistors, it is usual to think of resistors occupying the edges of the undi-

rected graph {{1, 2, . . . , n}, DN} with the nodes (vertices) representing the electrical con-
nection between resistors. A given set of resistors is denoted r =

{
r(l,m) : (l,m) ∈ DN

}
with the property r(l,m) = r(m,l). Figure 1 shows the resistor network topology when there
are N = 4 resistors per side.

We take the node with indexn to be the electrical reference node, which in our examples
we take (wlog) to be the bottom right-most node, as shown in Figure 1. The vector of
voltages v =

(
v1, v2, . . . , vn−1

)T
at nodes (with respect to the reference node) is related

to the vector of currents injected into nodes i =
(
i1, i2, . . . , in−1

)T
(and removed from the

reference node) by a combination of Ohm’s and Kirchoff’s laws summarized by the nodal
equations (e.g., Kuo 1962)

Y v = i. (5.1)

Here Y is the (n− 1) × (n− 1) reduced admittance matrix

Ylm =




−σ(l,m) l /= m
n∑

k=1

σ(l,k) l = m (5.2)

for l,m = 1, 2, . . . , n− 1, in which

σ(l,m) =

{
1/r(l,m) (l,m) ∈ DN

0 otherwise

is the conductance between nodes indexed by l andm.
For computational purposes it is noteworthy that Y is sparse, symmetric, and positive

definite when all r(l,m) ∈ (0,∞). We will exploit the feature that Y is a linear function of
the conductances when making a cheap approximation to the forward map.
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5.2 FORWARD MAP

Electrical measurements are made on the network by injecting currents into nodes and
measuring the resulting nodal voltages. To maintain the parallel with EIT as a noninvasive
imaging technique, we restrict the nodes used for current injection or voltage measurement
to a subset of nodes on the boundary—though in reservoir modeling applications measure-
ments are often made at a set of internal nodes. Let E ⊂ {1, 2, . . . , n− 1} be the set of
boundary nodes used for injecting current or measuring voltages, excluding the reference
node. We refer to these nodes as electrodes. At all other nodesm ∈ {1, 2, . . . , n− 1} \ E
current is conserved, that is, im = 0, and the voltage vm is unknown.

Because nodal voltages v are a linear function of applied currents i, all possible mea-
surements are made by applying the (usual) basis of current vectors at electrodes ik = ek for
k ∈ E, and measuring the resulting voltage at all electrodes, vl for l ∈ E. Hence noise-free

measurements consist of the block of the inverse of the admittance matrix
{
Y −1

l,k : l, k ∈ E
}

,

which we denote using the (Matlab-like) notation Y −1
EE . The inverse problem may be stated

as: given a block of the inverse of the reduced admittance matrix, is it possible to recover
the full admittance matrix of the form in Equation (5.2) and hence the resistor values?

Calculating the forward map A : r �→ Y −1
EE requires solving the matrix equation in

(5.1) for each current vector ik, a total of |E| solutions, where |E| denotes the number of
electrodes. For typical networks containing thousands of resistors, and tens of electrodes,
this step dominates computational cost of evaluating the posterior density, even using the
fastest solving algorithms.

5.3 COMPUTING THE FORWARD MAP EXACTLY AND APPROXIMATELY

An efficient exact forward map is computed by forming the reduced admittance matrix
Y , computing the Cholesky factorization of Y , then using that factorization to solve the |E|
instances of matrix Equation (5.1), one for each ik = ek, to produce the submatrix Y −1

EE .
Computational cost is dominated by the work required to perform the factorization, which
scales as O(n3) with respect to the number of nodes n (or resistors).

A cheap approximate calculation of the forward map is based on the first-order Taylor
approximation to A(r) with respect to conductivity. If r is the current state, consider a pro-
posed state r′ = r except with the single resistor difference r′(l,m) = r(l,m)+∆r(l,m), which
is the conductivity difference ∆σ(l,m) = 1/r′(l,m)−1/r(l,m). The first-order approximation
centered on the current state r is

A∗
r(r

′) = A(r) +
∂A

∂σ(l,m)
(r)∆σlm.

For two-resistor changes, the right-most term appears twice. Because of the linear depen-
dence of Y on σ(l,m), the Jacobian term has the simple form ∂A

∂σlm
(r) = −UTU , where

U = Y −1
El −Y −1

Em with the associated term absent if l = n orm = n. Hence all components
of the Jacobian are available from the previous, exact, evaluation of A(r) made within the
most recent acceptance step. Calculation of the approximate forward map and likelihood
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Figure 2. The true resistor network from which data were simulated. Black lines indicate a resistance of 2 Ohms
while the gray lines denote 3 Ohms. Arrows indicate nodes used as electrodes.

requires O(|E|2) operations and does not depend on the number of resistors, so is O(1)
with respect to image size. This is a significant saving over the exact solution.

5.4 LIKELIHOOD

We consider the current vector is exactly known but that the voltage measurements are
subject to additive errors. Noisy measurements d were simulated by adding independent
noise ∼ N(0, s2) to each component of Y −1

EE . Hence the pdf for measuring voltages d given
resistances r, that is, the likelihood, is

l(d | r) ∝ exp {−χ(r)} where χ(r) =
‖d−A(r)‖2

F

2s2
(5.3)

in which ‖·‖F is the Frobenius norm that is simply the square root of the sum of squares of
each element in the matrix, and d is written as a |E| × |E| matrix.

In our examples we take N = 24 resistors per side, hence 1,200 resistors in all and
n = 625 nodes. Resistances are either 2Ω or 3Ω and measurements are made on |E| = 24
electrodes with 6 electrodes evenly spaced on each side of the square network. The phantom
“true” image used is shown in Figure 2 in which 2Ω resistors are shown as a black line
while 3Ω are shown as gray, along with electrode positions.

With 24 electrodes we make 24 × 24 = 576 measurements, of which 300 are indepen-
dent because of symmetry of Y , and hence Y −1. Noise standard deviation was s = .005
giving a signal-to-noise ratio of about 1,000.

Because evaluation of the likelihood in Equation (5.3) requires computing the forward
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map, this is the expensive step that we will approximate in implementing Algorithm 1. An
approximate likelihood is calculated by using A∗

r(·) in place of A(·) when at state r.

5.5 REPRESENTATION AND PRIOR

For the sake of simplicity, we condition inversion on knowledge of the network topology
and that resistors take the value 2Ω or 3Ω. A representation in which resistors take one of a
few values is appropriate in high contrast EIT or where a type field is being reconstructed,
though in both these cases the representation may also allow for the resistor values to have
some variability.

We specify a prior distribution for the probability that some trial set of resistances r
coincides with the unknown true resistances as follows. A cell is a region within the network
bounded by four resistors. We say that (l,m) ∈ DN and (p, q) ∈ DN are neighbors and
write (l,m) ∼ (p, q) if resistor sites (l,m) and (p, q) are on the boundary of a common cell.
Thus, the four resistor sites bounding a cell form a clique. We model the spatial dependence
of resistors in the grid with the Markov random field

p (r) ∝ exp {−ρ (r)}
where

ρ (r) = −θ
∑

(l,m)∈DN

∑
(p,q)∼(l,m)

δr(l,m),r(p,q) (5.4)

in which δa,b = 1 if a = b and is otherwise zero, and θ is a lumping constant. In our
simulations we took θ = .5.

Note that each resistor site in the interior has six neighbors and therefore this MRF is
different to the familiar Ising model. A depiction of this neighborhood system was given
by Geman and Geman (1984, Fig. 1(f)).

5.6 MARKOV CHAIN MONTE CARLO

We solve the inverse problem (of finding r given d) using Bayesian inference based on
MCMC sampling of the posterior distribution. As an example of image recovery we report
the marginal posterior mode (MPM). For a two-level image the MPM corresponds to taking
the mean image and then setting each resistor to the closest allowable value.

Proposal of a candidate state is achieved using several “moves,” chosen to give ergodic
behavior over useful time scales. At each step a move from the following list is picked, with
relative probability 1:2:4, respectively:

1. Pick a resistor at random and set it to a possible value at random.
2. Pick two resistors at random and swap them.
3. Pick a resistor at random, then a resistor at each end, and swap the end resistors.

Move 1 is sufficient to give irreducibility while moves 2 and 3 are designed to give improved
mixing. These moves are naive and in the computed example 88% of proposals correspond
to no change. However, those proposals take negligible CPU time to identify and reject, and
do not affect our efficiency results.
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Figure 3. Marginal posterior mode (upper), the sample log-likelihood (lower right), up to a constant independent
of r, plotted against the update number, along with the autocorrelation function (ACF), (lower left) of the MCMC
output series, all for Algorithm 1. Dashed lines indicate variance of ACF asymptotic in the lag.

We implemented the standard Metropolis–Hastings algorithm and Algorithm 1 in Mat-
Lab, each using the proposal distribution defined above. The standard algorithm uses a stan-
dard Metropolis–Hastings acceptance step with the objective function calculated exactly.
Algorithm 1 uses the approximate calculation given above, in Step 2, and the exact calcula-
tion of the forward map, and objective function, in Step 3. The exact prior was used for both
implementations, as computing the prior incurs negligible cost. Because the approximate
likelihood contains the approximate forward map in the exponential, and the exact prior is
used, the approximate objective function is always positive and the conditions of Theorem
1 are satisfied. Theorem 1 guarantees that the chain produced by Algorithm 1, like that from
the standard algorithm, converges to the desired posterior distribution.

5.7 COMPUTATIONAL RESULTS

Each chain was initialized from a random pattern of allowable resistor values, and an
estimate of the MPM at each resistor was computed from the resulting output. The resulting
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Figure 4. Equivalent output to Figure 3 for the standard Metropolis–Hastings algorithm.

images are shown in Figure 3 (Algorithm 1) and Figure 4 (standard Metropolis–Hastings).
We recorded a number of statistics along each run, including the log-likelihood which
in this case is also the sum of squares of the residuals. Convergence is reliable in both
cases, as can be judged from the output statistics plotted in Figures 3 and 4. The integrated
autocorrelation time of the log-likelihood was computed. This quantity is small in efficient
MCMC since it is, roughly speaking, the number of correlated MCMC samples from the
posterior distribution with the variance-reducing power of one independent sample. In these
figures one MCMC update equals 2,000 steps of the chain, that is, 2,000 proposals.

From the plots of autocorrelation it can be seen that the standard Metropolis–Hastings
algorithm generates an independent sample each 32 MCMC updates while Algorithm 1
is slightly less efficient with an independent sample per 42 MCMC updates, that is, the
integrated autocorrelation times were 32 and 42, respectively. Algorithm 1, however, was
significantly faster and took 15.5 seconds of CPU time to produce an independent sample
whereas the standard algorithm took 379 seconds per independent sample. Hence the use
of the approximation reduces CPU time by close to a factor of 25 for this problem.

In the example, 2.9% of proposals (with resistance changes) are accepted in the standard
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Metropolis–Hastings algorithm so we would expect a speed-up by a factor of 35 when the
approximation has negligible cost and is accurate. The primary misclassification introduced
by the approximation was that 30% of proposals were falsely rejected, that is, were rejected
at Step 2 but would have been accepted by the exact calculation. Hence each of efficiency
and speedup is reduced by that factor.

6. DISCUSSION

We developed a simple algorithm to improve a Metropolis–Hastings MCMC when an
approximation to the objective function is available. As mentioned earlier, the resulting
chain is less efficient than the standard Metropolis–Hastings; however, a great gain in CPU
time may be obtained when the approximation uses negligible CPU time in comparison
to the exact calculation of the objective function. The example provided, in the field of
conductivity imaging, showed a decrease in CPU time by a factor of 25.

Our target application for Algorithm 1 is sample-based solutions to inverse problems
where evaluation of the likelihood, requiring evaluation of the forward map, dominates
computational cost. Here a local linear approximation to the forward map may be used to
form a cheap approximation, as in the computed example. There may also be cases where
it is advantageous to approximate the prior. In cases where the gradient is used within a
proposal, such as in a Langevin proposal step, calculation of the proposal may also be
computationally expensive. Then a straightforward generalization of Algorithm 1 can be
applied in which an approximation to the reverse proposal q(y|x) in Step 2 is also used,
perhaps based on a quadratic approximation to the forward map.
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