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1 Postulates and Symmetries

1.1 Postulates of quantum mechanics

1. The state of the quantum mechanical system is completely specified at each point
in time by a state ket |ψ, t〉 in Hilbert space. In position space, this function
ψ(r, t) ≡ 〈r|ψ, t〉 depends on the particle position r, and has the property that

|ψ(r, t)|2d3r = (Prob. particle lies in volume d3r, at position r and time t).
(1.1)

The probabilistic interpretation requires that ψ(r, t) be normalizable∫
d3r|ψ(r, t)|2 = 1, single-valued, and finite.

2. To every observable A in classical mechanics there corresponds a linear, Hermi-
tian operator Â in quantum mechanics. Requiring that observable expectation
values must be real constrains Â to be Hermitian. If the result of measuring Â is
a, then a must be one of the eigenvalues of Â|a〉 = a|a〉, with eigenfunction |a〉.

In practice, the spectrum of eigenvalues can be discrete (bound states), or contin-
uous (unbound states), and the discrete eigenvalue spectra are the origin of the
notion of quantum.

3. The expectation value of the observable Â is

〈Â〉 = 〈ψ, t|Â|ψ, t〉, (1.2)

and if the system is in an eigenstate of Â with eigenvalue a, then every mea-
surement of Â will give a. Given a complete set of orthogonal eigenvectors
1 =

∑
j |a j〉〈a j|, an arbitrary state may be represented as

|ψ, t〉 =
∑

j

c j|a j〉, (1.3)

where the probability of finding the result a j is P(a j) = |〈a j|ψ, t〉|2 = |c j|
2, giving

the measurement result

〈Â〉 =
∑

j

a j|c j|
2 =

∑
j

a jP(a j). (1.4)

Furthermore, a measurement that leads to eigenvalue a j collapses the state onto
the eigenstate |a j〉.

4. The state ket of the system evolves in time according to the time-dependent
Schrödinger equation

i~
∂

∂t
|ψ, t〉 = Ĥ|ψ, t〉. (1.5)

where Ĥ is the Hamiltonian of the system. If |ψ, 0〉 is in an eigenstate of Ĥ with
eigenvalue E, then |ψ, t〉 = e−iEt/~|ψ, 0〉.

7



1. Postulates and Symmetries

In what follows we will often omit the “hats” on operators, restoring them if the
operator character is not entirely clear from the context.

1.2 Bases in Hilbert space

At this point is useful to remind ourselves of the basic aspects of representing
quantum states in Hilbert space and important differences between discrete and
continuous spectra of eigenvalues. We assume we have a complete set of eigenkets
of an operator Â, with discrete eigenvalue spectrum, and operator x̂ with continuous
eigenvalue spectrum. Obvious examples are the discrete energy levels of of a simple
harmonic oscillator, or the continuous range of allowed values of the position of a
particle. In either case, the states provide a complete representations of the Hilbert
space of a single particle, but with different properties. Let us compare the properties
of these bases:

Discrete Continuous

Â|a〉 = a|a〉 x̂|x〉 = |x〉, (1.6a)
〈a|b〉 = δab 〈x|x′〉 = δ(x − x′), (1.6b)

1 =
∑

a

|a〉〈a| 1 =

∫
dx |x〉〈x|, (1.6c)

|ψ〉 =
∑

a

|a〉〈a|ψ〉 |ψ〉 =

∫
dx |x〉〈x|ψ〉, (1.6d)

〈ψ|φ〉 =
∑

a

〈ψ|a〉〈a|φ〉 〈ψ|φ〉 =

∫
dx 〈ψ|x〉〈x|φ〉, (1.6e)

Ô =
∑
a,b

|a〉〈a|Ô|b〉〈b| Ô =

∫
dx

∫
dx′ |x〉〈x|Ô|x′〉〈x′|, (1.6f)

Â =
∑

a

|a〉〈a|a, x̂ =

∫
dx |x〉〈x|x. (1.6g)

We see that (1.6f) gives a general representation of any operator, while for the
operator satisfying (1.6a), (1.6g) shows that the representation is diagonal. Notice
also that from (1.6b) we see that the continuum states have an interesting and
unavoidable pathology, namely that they are not normalizable in the usual sense
familiar for bound states, since apparently 〈x|x〉 = ∞. We should not be alarmed by
this! The continuum states are merely a convenient representation, and we will never
be in a position of having to test their normalisation experimentally. Even more
reassuringly, the delta function will almost always be accompanied by an integral
over one of its arguments, removing the apparent pathology [Reminder: the basic
property of the Dirac delta function is

∫
dx′ f (x′)δ(x − x′) = f (x)].

1.3 Symmetries in classical mechanics

In classical mechanics there is a correspondence between continuous symmetries
and conservation laws. In particular, for every continuous symmetry of the equations
of motion, there is a corresponding conservation law (Noether’s theorem). In general
there are two kinds of symmetries: discrete and continuous.
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1.4. Continuous Symmetries

Important examples of continuous symmetries are

Symmetry Conservation Law

Time invariance↔ Energy conservation
Space translational invariance↔ Momentum conservation,

However, in general time and position are not on an equal footing:

1. Time is not an observable.

2. There is no Hermitian operator with eigenvalues corresponding to time.

3. Time is a parameter of the theory, not a measurable quantity.

1.4 Continuous Symmetries

Figure 1.1: Emmy Noether (1882-
1935), a german mathematician
known for major contributions in ab-
stract algebra and theoretical physics.
Perhaps most famously, Noether’s the-
orem states that any differentiable
symmetry of the system Lagrangian
has an associated conservation law.

Continuous symmetries involve physical variables that may be continuously
varied. In this section we investigate the consequences of continuous symmetries in
describing quantum systems.

1.4.1 Infinitesimal unitary transformations

The fundamental representation of such an operation is the infinitesimal transforma-
tion. Let an infinitesimal unitary transformation depend on a real parameter ε and
differ from unity only at first order according to the definition

UG(ε) = 1 −
iε
~

G (1.7)

where the operator G is called the generator of the infinitesimal transformation.
The factor −i/~ is chosen for convenience. When such a transformation operator
acts on a state ket

|ψ, ε〉 = UG(ε)|ψ, 0〉, (1.8)

conservation of probability imposes U†G(ε)UG(ε) = 1, and the transformation is
unitary. At lowest order in ε this condition is satisfied if the parameter ε is real and
G is Hermitian:

U†G(ε)UG(ε) =

(
1 +

iε
~

G†
) (

1 −
iε
~

G
)

= 1 +
iε
~

(G† −G) + O(ε2) (1.9)

= 1, (1.10)

provided G = G†. Acting on a state vector or an operator gives

|ψ, ε〉 = |ψ, 0〉 −
iε
~

G|ψ, 0〉, (1.11)

Aε = UG(ε)AU†G(ε) = A +
iε
~

[A,G], at linear order, (1.12)

so that if [G, A] = 0, then Aε = A, and the operator is invariant.
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1. Postulates and Symmetries

1.4.2 Finite unitary transformations

Successive applications of the infinitesimal transformation enables finite transforma-
tions to be built

UG(α) = lim
N→∞

N∏
k=1

(
1 −

iα
~N

G
)

= lim
N→∞

(
1 −

iα
~

G
)N

= e−iαG/~. (1.13)

Transforming an operator A

eiαG/~Ae−iαG/~ = A +
iα
~

[G, A] +
(iα/~)2

2!
[G, [G, A]] + . . . (1.14)

we see that the operator is invariant under the transformation provided [G, A] ≡ 0.
However, note that (1.13) requires that the operators commute upon successive
applications of G. Time evolution is an important situation where this condition
does not hold.

1.4.3 Space translation

The homogeneity and isotropy of space underpins invariance of the equations of
motion under space translations in classical mechanics. In quantum mechanics, this
symmetry is generated by the momentum operator p. We can deal with all degrees
of freedom at once since the operators commute, [x j, pk] = i~δ jk. Space translation
is given by the choice

G = p̂, (1.15)
ε = δx, so that (1.16)

Up(ε) = 1 −
ip̂ · δx
~

. (1.17)

and for small displacements we can write the action on the ket in the basis of
eigenkets of position r̂|r〉 = r|r〉 as

〈r|
(
1 −

ip̂ · δx
~

)
|ψ〉 = ψ(r) − δx · ∇ψ(r) = ψ(r − δx) = 〈r − δx|ψ〉, (1.18)

where we use 〈r|p|ψ〉 = −i~∇r〈r|ψ〉. Thus the role of the translation operator is to
translate the state ket by vector δx, equivalent to moving the position eigenkets by
−δx.

For finite displacement by the vector a, we have the translation operator

Up(a) = exp
(
−

ia · p̂
~

)
(1.19)

Exercise 1.1: Taylor series

Show that in one dimension (1.19) reproduces the Taylor series for ψ(x + a) at all orders in a.
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1.4. Continuous Symmetries

1.4.4 Commutation relations

In general we can consider finite displacements, and the action of the displacement
operator on position eigenstates must give

Up(a)|r〉 = |r + a〉, (1.20)

hence

r̂Up(a)|r〉 = (r + a)Up(a)|r〉. (1.21)

However

Up(a)r̂|r〉 = rUp(a)|r〉, (1.22)

and hence

r̂U(a)|r〉 = Up(a)(r̂ + a)|r〉. (1.23)

Since |r〉 is arbitrary, we can write this as

U†(a)r̂U(a) = r̂ + a. (1.24)

Choosing now the infinitesimal displacement by δa, and using (1.17), we have

[δa · p̂, r̂] = −i~δa, (1.25)

and since this is true for any δa, we find the fundamental commutation relations

[x̂ j, p̂k] = i~δ jk. (1.26)

Exercise 1.2: Momentum commutators

Translations can be applied in any order Up(b)Up(a) = Up(a)Up(b). Show that this implies

[p̂ j, p̂k] = 0 (1.27)

Exercise 1.3: Eigeinstates of momentum

Show that p̂ is an observable whose eigenstates |p〉 are given by

|p〉 =
1

(2π~)3/2

∫
d3reip·r/~ |r〉 (1.28)
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1. Postulates and Symmetries

1.4.5 Time translation

In classical mechanics the Hamiltonian is the instantaneous system energy, and time
translation is a canonical transformation. In quantum mechanics time is a parameter,
not an operator, so that formulating time evolution requires additional information
outside of the Hilbert space structure, however, we can make an inspired guess
based upon the knowledge that the Hamiltonian is the generator of time evolution in
classical mechanics. In essence, we use the fact that time evolution is a continuous
symmetry, and the invariance of the equations of motion under time translations
(Noether’s theorem). A unitary operator that generates infinitesimal time translation
by δt is given by the choices

G = Ĥ, (1.29)
ε = δt, (1.30)

where Ĥ is the Hamiltonian. Applying this to the state ket gives(
1 − iĤδt/~

)
|ψ, t〉 ≡ |ψ, t〉 + δt

∂

∂t
|ψ, t〉, (1.31)

where this is taken as the definition of time evolution, equivalent to the postulated
form (1.5) of the time-dependent Schrödinger equation

i~
∂

∂t
|ψ, t〉 = Ĥ|ψ, t〉. (1.32)

It is convenient to define a unitary time evolution operator by its action on kets

|ψ, t〉 ≡ Û(t, t0)|ψ, t0〉, (1.33)

given the special notation Û(t, t0). Note however, that for time translation, the
composition rule (1.13) cannot be used to find Û(t, t0) because the Hamiltonian does
not (in general) commute with itself at different times. For the general case, we can
use the definition (1.33) in (1.32), and since |ψ〉 is arbitrary, find the equation of
motion for the time evolution operator

i~
∂

∂t
Û(t, t0) = ĤÛ(t, t0). (1.34)

The general solution of this equation will be presented in the next chapter.

Exercise 1.4: Time-independent Hamiltonian

Show that if Ĥ is time-independent, then we can find the finite-time operator

Û(t, t0) = exp
(
−

iĤ(t − t0)
~

)
(1.35)
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1.5. Schrödinger’s Equation

Exercise 1.5: Time dependent Hamiltonian

Show that for a time dependent Hamiltonian, if [Ĥ(t), Ĥ(t′)] = 0, then the formal solution is

Û(t, t0) = exp
(
−

i
~

∫ t

t0
dt′ Ĥ(t′)

)
(1.36)

1.4.6 Conservation of momentum

Dynamical conservation of a given quantity arises when the underlying symmetry is
related to time evolution. For a particle moving in free space, displacing the system
does not alter its time evolution since the evolution is merely translated (provided
space is isotropic and homogeneous). Formally, this means that the displaced system
evolves to the system obtained by displacing the original system after time evolution.
Hence, for any |ψ〉, we must have

U(t, t0)Up(a)|ψ〉 = Up(a)U(t, t0)|ψ〉, and hence, (1.37)

U(t, t0)Up(a) = Up(a)U(t, t0). (1.38)

Making use of the infinitesimal forms of the two operators, we find

[Ĥ, p̂ j] = 0. (1.39)

Consequently, if |p〉 is an eigenstate of the momentum operator, then it will remain
so under time evolution.

1.4.7 Symmetry operators

The preceding statements can be made more general, by noting that any symmetry
must take the form (1.38), and so, given that the symmetry operator must also be
unitary and Hermitian, we have, for any symmetry S

S †HS = H (1.40)

1.5 Schrödinger’s Equation

In the position representation we can obtain a more familiar form of the
Schrödinger equation for the wavefuction corresponding to the sate ket |ψ, t〉:

ψ(r, t) = 〈r|ψ, t〉, (1.41)

and so we have, from (1.32),

i~
∂ψ(r, t)
∂t

= 〈r|H|ψ, t〉. (1.42)

13
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If the Hamiltonian is H = p̂2/2m + V(r̂), then

〈r|V(r̂)|ψ, t〉 = V(r), (1.43)

and using (1.18), we have

〈r|p̂|ψ, t〉 = −i~∇ψ(r, t), (1.44)

and hence

〈r|
p̂2

2m
|ψ, t〉 = −

~2∇2

2m
ψ(r, t), (1.45)

leading to the Schrödinger equation in the form

i~
∂ψ(r, t)
∂t

=

(
−
~2∇2

2m
+ V(r)

)
ψ(r, t). (1.46)

Exercise 1.6: General form of the Schrödinger equation

If the Hamiltonian is a general function H(r̂, p̂) of momentum and position operators, show that the
Schrödinger equation takes the form

i~
∂ψ(r, t)
∂t

= H(r,−i~∇)ψ(r, t), (1.47)

where the ordering of operators is preserved.

1.6 Discrete Symmetries

Perhaps the most important discrete symmetry in quantum mechanics occurs under
the operation of particle exchange for indistinguishable particles. Another important
example is that of time-reversal, however in this course we will forego a detailed
analysis of this symmetry.

1.6.1 Exchange symmetry

In quantum mechanics we deal with indistinguishable particles, and this property
of quanta has far reaching consequences. Consider two particles with coordinates
r1, r2. We represent the interchange of particles by the permutation operator P
acting on the wavefunction

Pψ(r1, r2) = ψ(r2, r1). (1.48)

Clearly P2 = 1. Furthermore, the Hamiltonian is invariant under the permutation,
PHP−1 = H, and consequently P and H commute:

[P,H] = 0, (1.49)

and these operators can be simultaneously diagonalised. If ψ is an eigenfunction of
H with energy eigenvalue E, Hψ = Eψ, then PHψ = EPψ, and hence

PHψ = (PHP−1)Pψ = HPψ = EPψ, (1.50)
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1.6. Discrete Symmetries

so that Pψ also an eigenfunction of H with the same energy. If the energy is not
degenerate, then Pψ and ψ must describe the same sate, and Pψ can only differ from
ψ by a normalization factor. Since P2 = 1, the factor can be chosen to be ±1, and
thus

ψ(r1, r2) = ±ψ(r2, r1). (1.51)

That is, the wavefunction must be either symmetric or antisymmetric under the
interchange of particle coordinates. Particles with the symmetric property are called
Bosons and obey Bose statistics, while those with the antisymmetric property are
called Fermions and obey Fermi statistics.
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2 Pictures of Quantum Dynamics

2.1 Schrödinger Picture

There is considerable flexibility in quantum mechanics regarding the dynamics we
attribute to the various elements of the theory. Consider an observable A, with
Schrödinger picture expectation value

〈A(t)〉 = 〈ψ, t|A(t)|ψ, t〉, (2.1)

where in general the operator A can contain explicit time dependence even in the
Schrödinger picture; we will denote Schrödinger picture operators by the absence
of a subscript. However, we have a clear definition for the way state kets evolve,
namely via (1.33), (1.34). Thus we can write

〈A(t)〉 = 〈ψ, t0|U†(t, t0)A(t)U(t, t0)|ψ, t0〉, (2.2)

where the quantity on the left is observable, and independent of the representation
of quantum dynamics we choose.

In the Schrödinger picture, time evolution occurs for state-kets, while operators
only contain their explicit time dependence:

i~
∂

∂t
|ψ〉 = H|ψ〉, (2.3)

dA
dt

=
∂A
∂t

(2.4)

For the general case where H is time dependent, we must focus on solving the
differential equation (1.34). We will see how to do this in Section 2.3, by focusing on
the role of an interaction Hamiltonian. The generalisation to arbitrary Hamiltonians
is immediate.

2.2 Heisenberg Picture

In the Heisenberg picture we attribute the time evolution to the operators, preserving
the state kets. We can define the Heisenberg picture operator When there is no
explicit time dependence in the operators, the formal solution to this equation can
be written in terms of the time evolution operator (1.33) as

AH(t) = U†(t, t0)A(t)U(t, t0). (2.5)
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2. Pictures of Quantum Dynamics

Using (1.34), we find

dAH

dt
= −

i
~

[AH ,H] + U†(t, t0)
∂A
∂t

U(t, t0). (2.6)

Noting that A is ultimately just a function of x̂ and p̂, and these operators transform
to x̂H(t) = U†(t, t0)x̂U(t, t0), etc, we have the Heisenberg equation of motion

dAH

dt
= −

i
~

[AH ,H] +
∂AH

∂t
. (2.7)

and all of the time dependence has been moved into the operator evolution, so the
kets are now time-invariant.

2.3 Interaction Picture (Dirac Picture)

In practice, it is usually the case that the Hamiltonian can be divided into a system
Hamiltonian H0 describing the bare evolution of each mode of the system in the
absence of interactions, and an interaction Hamiltonian VI describes interactions
between modes. In many cases, the system evolution is rather trivial, but may
represent a rapid time evolution due to a significant energy. Dirac introduced the
interaction picture of time evolution that is intermediate between Schrödinger and
Heisenberg that simplifies dynamical problems. We write the Hamiltonian in the
Schrödinger picture as

H = H0 + V(t), (2.8)

where we assume that H0 is independent of time, and the interaction Hamiltonian
V(t) may have explicit time dependence. In the interaction picture we define the
operators and states as

AI(t) = eiH0t/~AS e−iH0t/~, (2.9)

|ψI(t)〉 = eiH0t/~|ψS (t)〉 (2.10)

giving the time evolution

i~
dAI

dt
= [AI(t),H0], (2.11)

i~
d
dt
|ψI(t)〉 = VI(t)|ψI(t)〉, (2.12)

where

VI(t) ≡ eiH0t/~V(t)e−iH0t/~ (2.13)

is the interaction Hamiltonian in the interaction picture. Thus the operators evolve
according to H0, while the state ket evolution is governed by VI(t). In terms of the
unitary system evolution operator U0(t) = e−iH0t/~, the interaction picture variables
can be written as
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2.3. Interaction Picture (Dirac Picture)

AI(t) = U†0(t)AS U0(t), (2.14)

|ψI(t)〉 = U†0(t)|ψS (t)〉 = U†0(t)U(t)|ψS (0)〉. (2.15)

A word of caution: it is common to rather swiftly go into an interaction picture
and immediately discard the labels of operators that keep track of the picture. The
rationale is similar to that encountered when dropping the “hats” above operators:
the context makes it clear that the problem is being solved in an interaction picture.
This statement comes with the priviso that one understands the physical system
involved — at least at some basic level. It is important to always have in the back of
your mind that there is a system Hamiltonian at work causing time evolution with a
particular set of energy eigenvalues.

2.3.1 Formal solution via Dyson series

The general problem is now reduced to finding the evolution of the state kets with
respect to this modified interaction Hamiltonian. The formal solution of the equation
of motion (2.12) is obtained via the Dyson series. Given that time evolution is
unitary, there is an operator UI(t, t0) that generates time evolution in the interaction
picture

|ψI(t)〉 = UI(t, t0)|ψI(t)〉, (2.16)

and which obeys the equation of motion

dUI(t, t0)
dt

= −
i
~

VI(t)UI(t, t0), (2.17)

with initial condition UI(t0, t0) = 1. An implicit solution is found by formally
integrating to give

UI(t, t0) = 1 −
i
~

∫ t

t0
dt1VI(t1)UI(t1, t0), (2.18)

and this solution may be iteratively reused to find

UI(t, t0) = 1 +

∞∑
n=1

(
−

i
~

)n ∫ t

t0
dt1

∫ t1

t0
dt2 . . .

∫ tn−1

t0
dtnVI(t1)VI(t2) . . .VI(tn),

(2.19)

where the ordering of operators must be carefully accounted for.
This expression is more conveniently expressed in terms of the time ordered

product, T, defined to reorder any operator product so as act with operators in
chronological order. Specifically, for any operator product with different time
arguments t1 > t2 > t3, the action is

T {A(t3)B(t1)C(t2)} = B(t1)C(t2)A(t3). (2.20)
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2. Pictures of Quantum Dynamics

Noting that, for example∫ t

t0
dt1

∫ t

t0
dt2T {VI(t1)VI(t2)} =

∫ t

t0
dt1

(∫ t1

t0
dt2 VI(t1)VI(t2) +

∫ t

t1
dt2 VI(t2)VI(t1)

)
= 2

∫ t

t0
dt1

∫ t1

t0
dt2 VI(t1)VI(t2), (2.21)

we find in general∫ t

t0
dt1

∫ t1

t0
dt2 . . .

∫ tn−1

t0
dtnVI(t1)VI(t2) . . .VI(tn) =

1
n!

T
{(∫ t

t0
dτ VI(τ)

)n}
,

(2.22)

and hence the Dyson series can be rewritten as

UI(t, t0) = T
{

exp
(
−

i
~

∫ t

t0
dτ VI(τ)

)}
(2.23)

Exercise 2.1: Time ordering the Dyson series

Prove (2.21), and (2.23).

Figure 2.1: In his 1926 doctoral the-
sis Paul Dirac gave a very general
and constructive approach to quantiz-
ing a classical system. The procedure
is called canonical quantization, due
to the central role played by the canon-
ical coordinates of Hamilton’s formu-
lation of classical mechanics.

2.4 Canonical Quantization

While there is no rigorous way of proceeding directly from classical mechanics
to quantum mechanics, there are two principal procedures, both of which were
formulated by Dirac. The simplest of these is called canonical quantization, and
provides a mapping from the Hamiltonian formulation of classical mechanics. The
other is the path integral formulation, further developed by Feynman, and based
upon the Lagrangian formulation of classical mechanics. The latter is more technical,
and we will not find use for it in this course. It has the advantage of being better
suited for relativistic regimes.

The procedure of canonical quantization runs as follows:

i) Set up a system of generalised co-ordinates qi appropriate to the system and
identify the Lagrangian L(qi, q̇i). This gives a formulation of classical mechan-
ics in terms of the principle of the stationary action.

ii) Compute the generalised momenta

pi =
∂L
∂q̇i

(2.24)
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2.4. Canonical Quantization

iii) These canonical co-ordinates qi, pi satisfy the classical Poisson bracket rela-
tionships

{
qi, p j

}
P

= δi j, where for any two functions of the coordinates the
bracket is defined as{

f (qi, p j), g(qi, p j)
}

P
=

∑
j

∂ f
∂q j

∂g
∂p j
−
∂ f
∂p j

∂g
∂q j

. (2.25)

iv) The corresponding quantum operators p̂i, q̂i will have the commutation relations
[q̂i, p̂ j] = i~δi j.

v) Compute the Hamiltonian

H(qi, pi) =
∑

piq̇i − L. (2.26)

vi) The quantized Hamiltonian Ĥ is the same function of the p̂i and q̂i as in classical
mechanics — however there may be ambiguities due to choices of operator
ordering. The ordering must be chosen to make Ĥ Hermitian.

vii) The Heisenberg equations of motion for operators are computed using the
commutation relation [q̂i, p̂ j] = i~δi j.

viii) The wavefunction can be chosen as a function of variables qi, and the operator
p̂ j when acting on this wavefunction can be chosen as −i~∂/∂q j.

Exercise 2.2: Quantizing the pendulum

1. Carry out the canonical quantization procedure for a simple pendulum consisting of mass m subject
to earth’s gravity attached to a rigid massless rod of length l, that is fixed at the other end, and allowed
to move in a single vertical plane. Take as your canonical coordinate the angle subtended between the
rod and the downward direction.

2. Give a qualitative account of the eigenfunctions of the Schrödinger equation by describing the limit
of large and small energy (Hint: for this purpose you may ignore the fact that the angle is periodic
and treat it as an unbounded coordinate).
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3 Elementary Quantum Systems

At this point it is worthwhile to review some of the properties of elementary quantum
systems. We will outline some of the essential aspects of the simple harmonic
oscillator, two level systems, operator algebra, coherent states and numbers states.
These concepts have universal application across all of quantum physics.

3.1 Simple Harmonic Oscillator

In classical and quantum mechanics, the Hamiltonian for a single particle in a simple
harmonic oscillator potential is

H =
p2

2m
+

mω2x2

2
. (3.1)

The commutation relations [x, p] = i~ provide our route to quantisation whereby the
classical coordinates are replaced with quantum operators.

3.1.1 Schrödinger picture

In the Schrödinger picture the quantum state |ψ, t〉 evolves according to the equation
of motion (2.3), and the operators are time-invariant. Defining the operators

a =
1

√
2~mω

(mωx + ip), (3.2)

a† =
1

√
2~mω

(mωx − ip), (3.3)

we have

[a, a†] = 1 (3.4)
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Figure 3.1: Ladder of states for a one
dimensional harmonic oscillator.

and the Hamiltonian becomes

H = ~ω
(
a†a + 1

2

)
, (3.5)

where the operator a†a determines the system energy. The eigenstates in the position
representation can be labelled by the eigenvalue of this operator, n, and satisfy

~ω(n + 1
2 )ψn(x) =

(
−~2∂2

x

2m
+

mω2x2

2

)
ψn(x) (3.6)

with solutions that are well known as products of Hermite polynomials and an
overall Gaussian envelope.
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3.1.2 Heisenberg picture

Given the Hamiltonian H0 = ~ωa†a, the Heisenberg picture operators take the form

a(t) = eiωta†aae−iωta†a, (3.7)

Furthermore ȧ(t) = −i[a,H0]/~ = −iωa, for which the formal solution is a(t) =

e−iωta(0). Hence we have

eiωta†aae−iωta†a = ae−iωt. (3.8)

3.2 Fock States or Number States

Given a single spatial mode containing Bose particles described by operators a and
a†, so that

[a, a†] = 1, [a(†), a(†)] = 0, (3.9)

we can introduce a set of Fock states that are defined as eigenstates of the number
operator n = a†a

a†a|n〉 = n|n〉, (3.10)

and clearly the ground (vacuum) state satisfies a†a|0〉 = 0. These states form a
complete and orthonormal set:

〈n|m〉 = δnm, (3.11)

∞∑
n=0

|n〉〈n| = 1 (3.12)

and thus form a complete set of basis states for the singe-mode Hilbert space for
Bosons. The number states are created from the vacuum by successive actions of
the creation operator

|n〉 =
(a†)n

√
n!
|0〉. (3.13)

Exercise 3.1: Number states from vacuum states
Show that the definition of the eigenproblem (3.10), together with the commutation relation (3.9) is

sufficient to completely determine the action of the creation and annihilation operators on the number
states as
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3.3. Operator Algebra

a|n〉 =
√

n|n − 1〉, a† |n〉 =
√

n + 1|n + 1〉, (3.14)

and thus derive (3.13).

3.3 Operator Algebra

3.3.1 Baker-Campbell-Hausdorff theorem

Given any operators for which [A, [A, B]] = [B, [A, B]] = 0, there is a very useful
factorisation of the exponential (a proof can be found in many texts)

eA+B = eAeBe−[A,B]/2 = eBeAe[A,B]/2. (3.15)

The special case where the commutator is a c-number often occurs, for example
[q, p] = i~ or [a, a†] = 1, so the theorem has many applications.

3.3.2 General commutators for Boson operators

For any integer n, it can be shown by induction on n that

[a, a†n] = na†n−1 =
∂a†n

∂a†
, [a†, an] = −nan−1 = −

∂an

∂a
. (3.16)

Consequently, for any function f (a, a†) that may be expanded in a power series in a
and a†, we also have

[a, f (a, a†)] =
∂ f
∂a†

, [a†, f (a, a†)] = −
∂ f
∂a
. (3.17)

The corresponding expressions for operators position and momentum operators q,
p, related to a, a† via (3.2), (3.3), with [q, p] = i~ are

[q, f (q, p)] = i~
∂ f
∂p
, [p, f (q, p)] = −i~

∂ f
∂q

(3.18)

3.4 Coherent States

Coherent states play a central role in quantum mechanics due to their importance for
describing modes containing a large number of bosons. They are states with a maxi-
mal coherence, and a classical behaviour, and where first obtained by Schrödinger as
minimum uncertainty solutions of the Schrödinger equation that balance the uncer-
tainty equally between X and P. It is difficult to overstate the importance of coherent
states. They provide, for example, a first approximation to the quantum state of the
coherent light emitted by a laser, of atoms in a dilute gas Bose-Einstein condensate,
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3. Elementary Quantum Systems

and of the Cooper pairs of electrons responsible for superconductivity.

Figure 3.2: In 1963 Roy Glauber in-
troduced coherent states in the quan-
tum theory of light. Glauber gave
a theory of photodetection in which
coherent states are the natural eigen-
states of the detection process (photon
annilation); he shared the 2005 Nobel
Prize in Physics for his discovery.

Coherent
states are not eigenstates of any Hamiltonian, rather, they are eigenstates of the
annihilation operator that are parametrised by complex eigenvalue α:

a|α〉 = α|α〉. (3.19)

In the number state basis, the coherent states take the form

|α〉 = e−|α|
2/2

∞∑
n=0

αn

√
n!
|n〉, (3.20)

involving all possible states |n〉. This expression gives an indication as to why the
corresponding eigenproblem for the creation operator, a†|ψ〉 = λ|ψ〉, has no solutions,
since the action of the creation operator will remove the vacuum contribution to a
number-state expansion of |ψ〉.

Exercise 3.2: Number state representation of coherent states

Expand the coherent states in (3.19) in the number state basis and find a recursion relation for the
expansion coefficients in terms of a normalisation constant to be determined. Evaluate the normalisation
constant, and thus verify (3.20).

The overlap between coherent states

|〈α|β〉|2 = e−|α−β|
2
, (3.21)

shows that they are not orthogonal. The resolution of the identity for these overcom-
plete states reads

1
π

∫
d2α |α〉〈α| = 1, (3.22)

where the integral is over the complex plane
∫

d2α ≡
∫ ∞
−∞

dαr
∫ ∞
−∞

dαi, for α ≡
αr + iαi.

Using the number state representation, one finds that the number statistics of
coherent states are Poissonian:

P(n) ≡ |〈n|α〉|2 =
n̄n

n!
e−n̄, (3.23)

where n̄ ≡ 〈α|a†a|α〉 = |α|2.

Exercise 3.3: Poissonian number fluctuations

1. Calculate 〈α|(a†a − n̄)2 |α〉 and interpret the result in light of (3.23).

2. Use (3.20) to confirm (3.22) by evaluating the integral.
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Using the momentum and position operators (3.2), (3.3), it is straightforward to
show that coherent states are minimum uncertainty states:

∆p∆q =
~

2
. (3.24)

Using (3.13) is is easily seen that coherent states may be created from the vacuum as

|α〉 = e−|α|
2/2eαa† |0〉. (3.25)

Physically, coherent states can be created by exciting a quantum harmonic oscillator
with a classical driving field. An example is provided by an optical cavity mode
driven by a coherent laser field, with classical amplitude ε (sadly we do not have
space in this course for a quantum theory of the laser). The interaction Hamiltonian
for this process is

Hint = i~
(
εa† − ε∗a

)
, (3.26)

for which the time-evolution operator is

D(α) ≡ eαa†−α∗a, (3.27)

with α = εt. Continuous driving of the cavity mode will create a large-amplitude
coherent state for the oscillator

|α〉 = D(α)|0〉. (3.28)

Using the Baker-Hausdorf lemma (3.15), one can then show that (3.28) and (3.25)
are equivalent. The operator (3.27) is a displacement operator, as it displaces the
vacuum state to amplitude α on the complex plane.

Exercise 3.4: Coherent states are displaced vacuum states

Prove that (3.28) and (3.25) are equivalent.

Exercise 3.5: Time evolution of a coherent state

Show that for a simple harmonic oscillator evolving according to the system Hamiltonian H = ~ωa†a,
an initial coherent state |α〉 will evolve into an eigenstete of a with coherent amplitude α(t) = αe−iωt .

3.5 Pauli matrices for two level systems

Two level systems play a fundamental role in physics, underlying the description of
electron states of atoms interacting with radiation, and of spin-1/2 fermonic systems
generally. The two level atom is described by a two state wave function

|ψ〉 = ue|e〉 + ug|g〉 (3.29)

so that we may identify the state with the two component vector

|ψ〉 ↔

(
ue

ug

)
, (3.30)
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and the two-state problem can be described by this basis. The Pauli matrices are
defined as

σx =

(
0 1
1 0

)
, σy = i

(
0 −1
1 0

)
, σz =

(
1 0
0 −1

)
, (3.31)

which, together with the matrix identity

1 =

(
1 0
0 1

)
, (3.32)

form a complete basis for any two level system. At this point a natural step is to
introduce the spin vector as a vector over the field of Pauli matrices:

σ ≡ [σx, σy, σz], (3.33)

thus utilising the identification of each of the Pauli matrices with a particular spatial
axis, and giving a compact notation for physical quantities. For example, the system
Hamiltonian may be expressed as

Hsys = 1
2~Ωσ · n, (3.34)

where n is a 3D unit vector. This notation greatly simplifies many calculations. If
n = (0, 0, 1), then

Hsys = 1
2~Ωσz = 1

2~Ω

(
1 0
0 −1

)
, (3.35)
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Figure 3.3: Raising and lower opera-
tors for a two level atom.

3.5.1 Properties of Pauli matrices

There are a number of useful properties:

{σi, σ j} = 2δi j, (3.36a)

[σi, σ j] = 2i
∑

k

εi jkσk, (3.36b)

σiσ j = δi j + i
∑

k

εi jkσk, (3.36c)

G = 1
2

ITr (G) +
∑

i

σiTr (σiG)

 , for any 2 × 2 matrix G,

(3.36d)

(σ · A)(σ · B) = A · B + iσ · A × B, (3.36e)
exp (iθσ · n) = cos θ + iσ · n sin θ, (3.36f)

exp (a + b · σ) = ea
(
cosh |b| +

σ · b
|b|

sinh |b|
)
, (3.36g)
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where the Levi-Civita symbol is defined as

εi jk ≡


+1 if (i, j, k) = (1, 2, 3) and cyc. perm,
−1 if (i, j, k) = (1, 3, 2) and cyc. perm,
0 if i = j or j = k or k = i.

(3.37)

Exercise 3.6: Pauli matrix identities

Prove (3.36a)-(3.36f).

It is often convenient to express the two-level system in terms of the raising and
lowering operators

σ± = 1
2

(
σx ± iσy

)
(3.38)

so that, for example

σ+ =

(
0 1
0 0

)
(3.39)

acts to promote the state of a two level atom from the ground to the excited state.
These operators have the useful properties

σ2
+ = σ2

− = 0, σ2
z = 1, (3.40a)

σ±σ∓ = 1
2 (1 ± σz), (3.40b)

[σ+, σ−] = σz, (3.40c)
[σz, σ±] = ±2σ±, (3.40d)

G = 1
2 ITr (G) + 1

2σzTr (σzG) + σ+Tr (σ−G) + σ−Tr (σ+G) . (3.40e)

3.5.2 Evolution of an isolated two-level system

It is straightforward to show that the Hamiltonian (3.35) generates the Heisenberg
picture time evolution

σ±(t) = eiHsyst/~σ±e−iHsyst/~ = e±iΩtσ±. (3.41)

Exercise 3.7: Free evolution of raising and lowering operators

Prove (3.41).
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4 Second Quantization

In this section we introduce the concept of second quantization as a natural extension
of canonical quantization to many body systems. For many physical systems the
interactions between particles are local or quasi-local in coordinate space, motivating
the introduction of field operators as a route to quantisation of the single particle
Schrödinger wavefunction. This second quantisation allows a natural generalization
to accommodate many-body physics. The essential procedure makes use of a basis
of eigenfunctions of a single-particle Schrödinger equation as a suitable expansion
of the field operators. For definiteness we confine our discussion to massive particles
in this chapter. Quantization of the Electromagnetic Field proceeds along similar
lines, as discussed in the next chapter.

4.1 Motivation

Given an orthonormal set of state-kets |λ〉, eigenstates of a single-particle Hamilto-
nian:

H|λ〉 = ελ|λ〉, 〈λ|σ〉 = δλ,σ, (4.1)

this set of states is a complete basis for the one-body Hilbert space:

1 =
∑
λ

|λ〉〈λ|. (4.2)

States in the many-body Hilbert space require correct symmetrisation to account
for the quantum statistics of indistinguishable particles, namely, whether they are
Bosons or Fermions. For bosons the wave function must be symmetric under particle
exchange, while for fermions it must be antisymmetric. Consider representing the
state of two-particles populating only two of these modes |λ1〉, |λ2〉. For identical
bosons (fermions), we can introduce the index ζ = ±1 to describe the statistics of
bosons (fermions), and write the correctly symmetrized quantum state as

|λ1, λ2〉ζ =
1
√

2

[
|λ1〉 ⊗ |λ2〉 + ζ |λ2〉 ⊗ |λ1〉

]
, (4.3)

so that the two-body wave function ψB (ψF), found by projecting onto the coordinate
representation |x1, x2〉 = |x1〉 ⊗ |x2〉, is given by

ψB(x1, x2) =
1
√

2
[〈x1|λ1〉〈x2|λ2〉 + 〈x1|λ2〉〈x2|λ1〉] , (4.4)

ψF(x1, x2) =
1
√

2
[〈x1|λ1〉〈x2|λ2〉 − 〈x1|λ2〉〈x2|λ1〉] . (4.5)

The appropriately symmetrized N-particle state can be expressed in the form
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4. Second Quantization

|λ1, λ2, . . . , λN〉 =
1√

N!
∏

λ j
nλ j !

∑
P

ζ(1−sgn P)/2|λP1〉 ⊗ |λP2〉 ⊗ · · · ⊗ |λPN〉,

(4.6)

where nλ j represents the total number of particles in state λ j (for fermions the
exclusion principle forces the additional constraint nλ j ≤ 1). The summation
includes all N! permutations of the quantum numbers {λ1, . . . , λN}, and sgn P gives
the sign of the permutation P1. Note that the ordering of the quantum numbers
defining |λ1, λ2, . . . , λN〉 must be adhered to.

While describing the symmetrization clearly, this formalism for representing
quantum states has serious disadvantages:

i) The practical representation of many-body states requires very large numbers
of terms. For example, to calculate the overlap of two states, (N!)2 terms must
be computed.

ii) There are very useful statistical ensembles that do not have fixed N, and a more
flexible description is desirable.

iii) One often is interested in questions that are more easily formulated in the
language of second quantization.

For N particles with positions r1, r2, . . . , rN , the system is described by the many-
body wavefunction φ(r1, r2, . . . , rN , t) ≡ 〈r1, . . . , rN |φ, t〉. The general problem
we consider starts from the expression of the many body Hamiltonian in first-
quantization

H =

N∑
j=1

[
−
~2

2m
∇2

j + V(r j)
]

+ 1
2

N∑
j=1,k, j

U(r j, rk) + . . . (4.7)

wherein the states evolve according to the many body Schrödinger equation

i~
∂〈r1, . . . , rN |φ, t〉

∂t
= i~

∂φ(r1, . . . , rN , t)
∂t

= 〈r1, . . . , rN |H|φ, t〉. (4.8)

Our aim is to rewrite this formulation in the language of second-quantization. This
will allow a reformulation of the above description in terms of the action of field
operators. The resulting theory is nonlinear (note the inherent linearity of (4.8) with
respect to the many-body wavefunction). After discussing the free particle kinetic
and potential terms, examples of one-body operators, we will see how to find an
explicit representation of any two-body operator U(r, r′).

4.1.1 Many Body Interpretation

There is a direct mapping between the solutions of the free-particle
Schrödinger equation, represented by Hamiltonian (3.1), and number state rep-

1sgn P = 1(−1) if the number of transpositions of two elements that brings the permutation
(P1,P2, . . . ,PN) back to its original form (1, 2, . . . ,N) is even (odd).
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4.2. Many-Body Fock Space

resentation for non-interacting Bosons in a single mode defined by (3.9), and (3.10).
Note a subtle conceptual distinction: for the solutions of Schrödinger equation in
position space ψn(x) ≡ 〈x|n〉, the quantum number n labels the energy of a single-
particle state with energy ~ω(n + 1

2 ). By introducing the number states as above, we
now have a representation of a many-body Hilbert space for Bosons in each of a set
of single-particle modes.

|0i

|1i ⌦

⌦

|0i

|1i

|2i

H = ~(a†a + 1
2 )H =

p2

2m
+

m!2x2

2

|0i

|1i

|2i

E
n
er

g
y

Figure 4.1: Oscillators: solutions
of the Schrödinger equation for the
harmonic oscillator potential V(x) =

mω2 x2/2 (left), and the ladder rep-
resentation of a many-body system
(right). The tensor product represents
the fact that these states represent dif-
ferent degrees of freedom, motional
states (left), and particle number oc-
cupation of a particular state (right).

4.2 Many-Body Fock Space

We have seen that the number states provide a basis for the single-particle Hilbert
space, as any single-particle state can be represented as

|ψ〉 =
∑

n

|n〉〈n|ψ〉 =
∑

n

cn|n〉. (4.9)

The natural many-mode generalisation of (3.10) is defined as

|n1, . . . , nN〉 = |n1〉 ⊗ . . . |nN〉. (4.10)

where these states are now simultaneous eigenstates of the number operators nσ,

n̂σ|n1, n2, . . . 〉 = nσ|n1, n2, . . . 〉, (4.11)

where for brevity we allow σ to run over all of the independent single-particle states,
and all possible values of spin or other degrees of freedom required to specify a
unique single particle state. For example, for a system of fermions with spatial
degrees of freedom described by a set of plane-wave modes |k〉 with momentum
eigenvalue k, then nσ → nk,s where s describes the spin state. For photon states,
the Fock space includes polarisation so that nσ → nk,λ where λ = 1, 2 gives two
orthogonal polarisations for each electromagnetic plane wave mode with wave
vector k. In general, the number operators n̂σ can be chosen to form a complete set
of commuting observables for the multimode Fock space. The identity for this Fock
space is

1 =
∑

n j

|n1, n2, . . . 〉〈n1, n2, . . . |, (4.12)

where the sum runs over all n j, and all allowed values of each n j, namely n j =

0, 1, 2, . . . for Bosons, and n j = 0, 1 for Fermions.
For many-body states the symmetrization is handled by the commutation rela-

tions that the operators satisfy. Defining the generalised commutator

[A, B]ζ ≡ AB − ζBA, (4.13)

where [A, B]+ = [A, B] = AB − BA, and [A, B]− = {A, B} = AB + BA, so that
ζ = +1(−1) reproduces the commutation (anti-commutation) relation for Bosons
(Fermions). The commutation relations for the raising and lowering operators
defining the Fock space are then defined by

[aλ, a†σ]ζ = δλσ, [aλ, aσ]ζ = [a†λ, a
†
σ]ζ = 0 (4.14)
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4. Second Quantization

For bosons the number states of the Fock space are unbounded. For fermions, the
double action of the creation operator on the vacuum gives (a†σ)2|0〉 = 0, limiting the
occupation numbers in (4.11) to 0 or 1, and enforcing Pauli’s exclusion principle.
Given the definition (4.11) and the commutation relations (4.14), we can find the
action of raising and lowering operators on the state kets as

a†σ|n1, . . . , nσ, . . . 〉 = ζ sσ
√

nσ + 1|n1, . . . , nσ + 1, . . . 〉, (4.15)
aσ|n1, . . . , nσ, . . . 〉 = ζ sσ √nσ|n1, . . . , nσ − 1, . . . 〉 (4.16)

where sσ =
∑σ−1
λ j=1 nλ j , and the ζ sσ factor now does the work to produce the correct

symmetry of the many-body Fock state for identical particles. The many-body Fock
states can be created from the vacuum analogously to (3.13) via

|n1, n2, . . . 〉 =
∏
σ

1
√

nσ!
(a†σ)nσ |0〉. (4.17)

with the usual constraints on occupation numbers for Bosons and Fermions.

4.3 Change of basis

We first note that any single-particle state can be represented as

|λ〉 = a†λ|0〉, (4.18)

that is, by creating a state with one particle in a specific single-particle eigenstate
|λ〉. Given any two single-particle bases, with creation operators a†λ and b†σ, we can
use the completeness relation (4.2) and (4.18) to change basis according to

b†σ|0〉 = |σ〉 =
∑
λ

|λ〉〈λ|σ〉 =
∑
λ

〈λ|σ〉a†λ|0〉, (4.19)

and similarly for 〈σ| = 〈0|bσ. Hence we deduce the general rule for change of basis

b†σ =
∑
λ

〈λ|σ〉a†λ, bσ =
∑
λ

〈σ|λ〉aλ. (4.20)

4.4 Field Operators

One of the most fundamentally important basis representations is the position
representation, giving a continuous field theory, involving a continuum of quantum
numbers to specify the quantum state. We can thus transform from the Fock space
to the basis of eigenstates of the position operator

r̂|r〉 = r|r〉 (4.21)
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for which

〈r|r′〉 = δ(r − r′), (4.22)

1 =

∫
d3r |r〉〈r|. (4.23)

In this case we use (4.20), but we give the new operators a specific notation, and, in
terms of the Fock-space operators we have

ψ(r) =
∑
λ

〈r|λ〉aλ, ψ†(r) =
∑
λ

〈λ|r〉a†λ. (4.24)

Using the fundamental commutation relations (4.14), we can now find the gener-
alised commutation relations

[ψ(r), ψ†(r′)]ζ = δ(r − r′), [ψ(r), ψ(r′)]ζ = [ψ†(r), ψ†(r′)]ζ = 0, (4.25)

for Bose and Fermi field operators.

4.4.1 Interpretation

The procedure of arriving at the representation (4.24) is known as second-
quantization, and it can be shown to be equivalent to the first-quantised repre-
sentation in terms of a many-body wavefunction. Notice that the commutation
relations have nothing to do with the specific modes of the Fock space underlying
the continuous field theory, but merely require that such a basis of single-particle
states exists and has the correct orthonormality properties.

The operator ψ†(r) plays the role of a creation operator for the continuous
field theory, by creating a particle at definite position r as a superposition over all
indistinguishable single particle states. Consider the action on the vacuum:

ψ†(r)|0〉 =
∑
λ

a†λ|0〉〈λ|r〉 =
∑
λ

|λ〉〈λ|r〉 = |r〉.

(4.26)

However, the state |r〉 is not normalizable. A normalised state corresponding to the
single-particle wavefunction φ(r) is

|φ〉 =

∫
d3r φ(r)ψ†(r)|0〉. (4.27)

Exercise 4.1: Field commutators

Prove (4.25) using (4.14), and (4.20).

Exercise 4.2: Normalized state

Assume φ(r) is normalised to unity. Show, using properties of the field operators, that (4.27) gives a
correctly normalised wavefunction.

35



4. Second Quantization

4.4.2 Plane-wave modes

Let us now consider a specific basis for the Fock space, as defined by the number of
particles in each of a set of plane wave modes. For definiteness we consider particles
in a large cubical volume of side length L. Assuming periodic boundary conditions
on the wave functions, the momenta of the particles can take the values

p j = ~k j =
2π~
L

{
mx( j),my( j),mz( j)

}
, where ma( j) = 0,±1,±2,±3, . . .

(4.28)

In general, the mode space for the system could involve more quantum numbers to
describe each quantum state. In particular, the Fock space for the electromagnetic
field requires that each state has definite momentum and polarisation. The box-
normalised wave function for a single particle state with wavenumber k j is

〈r|k j〉 =
1
√

V
eik j·r. (4.29)

The field operator now takes the form

ψ(r) =
1
√

V

∑
j

eik j·ra j. (4.30)

The energy of momentum state p j is E j = ~2k2
j/2m, and the total energy and

momentum operators are

H =
∑

j

~2k2
j

2m
a†ja j, (4.31)

P =
∑

j

~k ja
†

ja j, (4.32)

for a system with total particle number

N =
∑

j

a†ja j. (4.33)

4.4.3 Properties of Field Operators

We have seen that using the commutation (anti-commutation) rule (4.14) for Bosons
(Fermions) we can write down the fundamental commutation relations (4.25) for
both Boson and Fermion field operators. However, for either Bosons or Fermions:

i) Total number operator.—

N =

∫
d3r ψ†(r)ψ(r), (4.34)

ii) Hamiltonian.—

H =

∫
d3r ψ†(r)

(
−
~2∇2

2m

)
ψ(r), (4.35)

iii) Total momentum.—

P =

∫
d3r ψ†(r) (−i~∇)ψ(r), (4.36)
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4.5. Many-Body States

iv) Hamiltonian commutators.— For commutators only, the following hold

[ψ(r),H] = −
~2∇2

2m
ψ(r), (4.37)

[ψ†(r),H] =
~2∇2

2m
ψ†(r). (4.38)

Exercise 4.3: Free particle

Prove (4.34)-(4.38). Use the basis transformation (4.20) when deriving (4.34)-(4.36).

4.5 Many-Body States

So far we have concentrated on single-particle states in second-quantization. For a
general N-body state, the equation of motion is the Schrödinger equation

i~
∂

∂t
|φ, t〉 = H|φ, t〉. (4.39)

Let us consider a two-body state in the second-quantized formalism, defined by

|r1, r2〉 =
1
√

2
ψ†(r1)ψ†(r2)|0〉. (4.40)

We then find that, for either Bosons or Fermions, this state has

i) Overlap

〈r1, r2|r′1, r
′
2〉 = 1

2
{
δ(r1 − r′1)δ(r2 − r′2) + ζδ(r1 − r′2)δ(r2 − r′1)

}
, (4.41)

ii) Identity

I =

∫
d3r1

∫
d3 r2|r1, r2〉〈r1, r2|, (4.42)

iii) The Schrödinger picture wavefunction

φ(r1, r2, t) ≡ 〈r1, r2|φ, t〉

= 〈0|ψ(r1)ψ(r2)|φ, t〉, (4.43)

with exchange symmetry φ(r1, r2, t) = ζφ(r2, r1, t).

iv) Equation of motion

i~
∂φ(r1, r2)

∂t
=

−~2∇2
1

2m
−
~2∇2

2

2m

 φ(r1, r2, t), (4.44)

using (4.37).

The generalisation to normalised N-particle states is rather obvious. The states
are

|r1, r2 . . . rN〉 =
1
√

N!
ψ†(r1)ψ†(r2) . . . ψ†(rN)|0〉, (4.45)

37



4. Second Quantization

with identity

I =

∫
d3r1 . . .

∫
d3rN |r1, . . . , rN〉〈r1, . . . , rN |, (4.46)

so that the state

φ(r1, . . . rN , t) = 〈0|
ψ(r1) . . . ψ(rN)

√
N!

|φ, t〉 (4.47)

has normalization∫
d3r1 . . . d3rN |φ(r1, . . . , rN , t)|2 = 1. (4.48)

Thus the creation of many-body position eigenstates is expressed in terms of field
operators acting on the vacuum.

4.6 Interactions between particles

4.6.1 One-body operators

Thus far we have met one-body operators, and have seen how to create many body
states. Let us briefly revisit the process of constructing many-body operators. A
convenient way of constructing many-body operators is to start from a Fock space
in which the operator is diagonal, and then transform to an arbitrary basis. For our
state kets defined in (4.1), we define the number operator

n̂λ j = â†λ j
âλ j , (4.49)

which will define the Fock space via (4.10). Consider an operator in the extended
Fock space (4.10), that is diagonal in this representation. The operator has a
particularly simple representation in the many-body Fock space as

Ô =
∑
nλ j

|nλ1 , nλ2 , . . . 〉〈nλ1 , nλ2 , . . . |Ô
∑
nλk

|nλ1 , nλ2 , . . . 〉〈nλ1 , nλ2 , . . . |, (4.50)

=
∑
nλ j

|nλ1 , nλ2 , . . . 〉〈nλ1 , nλ2 , . . . |Oλ1,λ2,..., (4.51)

where

Oλ1,λ2,... ≡ 〈nλ1 , nλ2 , . . . |Ô|nλ1 , nλ2 , . . . 〉. (4.52)

We now define a one-body operator Ô(1) in a natural way, namely that for such an
operator only one of the nλ j is changed in (4.52).

Furthermore, since the operator is diagonal, the matrix elements in the Fock
space are

〈n′λ1
, n′λ2

, . . . |Ô(1)|nλ1 , nλ2 , . . . 〉 =
∑

j

O(1)
λ j

nλ j〈n
′
λ1
, n′λ2

, . . . |nλ1 , nλ2 , . . . 〉

= 〈n′λ1
, n′λ2

, . . . |
∑

j

O(1)
λ j

n̂λ j |nλ1 , nλ2 , . . . 〉, (4.53)

for arbitrary nλ j , and hence we deduce the diagonal form of an arbitrary one-body
operator

38



4.6. Interactions between particles

Ô(1) =
∑
λ

〈λ|Ô(1)|λ〉â†λâλ, (4.54)

consistent with the expressions (4.31), (4.32), (4.33). Transforming to an arbitrary
basis representation we arrive at the general form of a one-body operator

Ô(1) =
∑
λµ

〈λ|Ô(1)|µ〉a†λaµ. (4.55)

4.6.2 Two-body operators

Two-body operators are required to represent pairwise interactions between par-
ticles. Particle indistinguishability makes inclusion of two-body potentials rather
cumbersome within first quantization. In the language of second-quantization the
formulation is considerably more straightforward.

Initially we consider two particles at rn and rm subject to a symmetric two-
body potential U(rm, rn) ≡ U(rn, rm). Thus, our two-body operator is conveniently
represented in the position basis, and we wish to find an operator Û in second-
quantized form whose action on a many-body state gives an identical result:

Û |r1, . . . , rN〉 =

N∑
n=1

N∑
m>n

U(rn, rm)|r1, . . . , rN〉 =
1
2

N∑
n=1

N∑
m=1,m,n

U(rn, rm)|r1, . . . , rN〉.

(4.56)

By analogy with the general form of one-body operators, working in the position
representation one might be tempted to guess the form

Û =
1
2

∫
d3r

∫
d3r′ ψ†(r)ψ†(r′)U(r, r′)ψ(r′)ψ(r), (4.57)

and indeed, we can confirm that this is correct. We proceed by applying the field
operators to (4.45), and making use of (4.25), ψ(r)ψ†(r′) = δ(r − r′) + ζψ†(r′)ψ(r):

ψ†(r)ψ†(r′)ψ(r′)ψ(r)|r1, . . . , rN〉
√

N! = ψ†(r)ψ†(r′)ψ(r′)ψ(r)ψ†(r1) . . . ψ†(rN)|0〉,

=

N∑
n=1

ζn−1δ(r − rn)ψ†(rn)ψ†(r′)ψ(r′)ψ†(r1) . . . ψ†(rn−1)ψ†(rn+1) . . . ψ†(rN)|0〉

(4.58)

We now use an identity for both Bosons and Fermions that allows us to move the
number-density operator in the above product:

ψ†(r′)ψ(r′)ψ†(r1) = ψ†(r1)
[
ζψ†(r′)ψ(r′) + δ(r′ − r1)

]
. (4.59)
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We can thus write (4.58) as

N∑
n=1

ζn−1δ(r − rn)ψ†(rn)
N∑

m,n

δ(r′ − rm)ψ†(r1) . . . ψ†(rn−1)ψ†(rn+1) . . . ψ†(rN)|0〉

=

N∑
n=1

N∑
m,n

δ(r − rn)δ(r′ − rm)|r1, . . . , rN〉
√

N!. (4.60)

Thus, multiplying (4.60) by U(r, r′)/(2
√

N!) and integrating, we find that (4.57)
gives a position representation of any two-body operator. In an entirely analogous
manner to the derivation of (4.55) we can expand in an arbitrary basis and find the
general representation of a two-body operator

Ô2 =
∑
µµ′λλ′

Oµµ′λλ′a†µa†µ′aλaλ′ , (4.61)

where Oµµ′λλ′ ≡
1
2 〈µ| ⊗ 〈µ

′|Ô2|λ〉 ⊗ |λ
′〉.

Exercise 4.4: Two-body operators

1. Prove (4.59), and hence derive (4.57).

2. Derive (4.61) along similar lines to the proof of (4.55).

4.6.3 Two-body Schrödinger equation

Consider the Hamiltonian

H = H0 + HI , where (4.62)

H0 =

∫
d3r ψ†(r)

(
−
~2∇2

2m

)
ψ(r), (4.63)

HI =
1
2

∫
d3r1

∫
d3r2 ψ

†(r1)ψ†(r2)U(r1, r2)ψ(r2)ψ(r1). (4.64)

In many cases of physical interest there is no dependence of U on the absolute coor-
dinate, U(r1, r2) ≡ U(r1 − r2), and we can then show that the Schrödinger equation
is of the form

i~
∂φ(r1, r2, t)

∂t
=

−~2∇2
1

2m
−
~2∇2

2

2m
+ U(r1 − r2)

 φ(r1, r2, t) (4.65)

Exercise 4.5: Two-body Schrödinger equation

1. Derive (4.65).

2. Show that a one-particle state evolving according to (4.62) does not interact.
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4.6.4 Two-body interaction in momentum space

For any two-body interaction for which U(r, r′) = U(r − r′) = U(|r − r′|), a
straightforward change of basis using (4.30) in (4.64) gives the momentum space
representation

Û =
1
2

∑
k1,k2,k3,k4

U1234a†k1
a†k2

ak3 ak4 (4.66)

where

U1234 =
1

V2

∫
d3r

∫
d3r′ei(k3−k2)·r+i(k4−k1)·r′U(r − r′)

= δk1+k2,k3+k4 Ũ(k2 − k3) (4.67)

where

Ũ(k) =
1
V

∫
d3r U(r) eik·r. (4.68)

The Kronecker-delta function in (4.67) expresses the fact that momentum is con-
served in the two-body collision. Notice that U1234 has no symmetry in (k1,k2) or
in (k3,k4), yet due to the summation over all k and the commutation relations, the
effective interaction terms are

1. Bosons.— The symmetrized form (U1234 + U2134)/2, meaning that only even
angular momentum partial waves interact.

2. Fermions.— The antisymmetrized form (U1234 − U2134)/2 occurs, meaning
that only odd angular momentum partial waves interact. Thus at sufficiently
low energies Fermions in the same spin state do not interact.

Exercise 4.6: Momentum space two-body interaction

Show that the two-body interaction (4.64) can be written in the form (4.67) when the interaction is
translationally invariant and exchange symmetric.
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Quantum Optics
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5 Quantum Theory of the Electromagnetic
Field

5.1 Quantization of the Electromagnetic Field

We follow the treatment in [1], and take as our starting point the source-free Maxwell
equations

∇ · B = 0, (5.1)

∇ × E = −
∂B
∂t
, (5.2)

∇ · D = 0, (5.3)

∇ ×H =
∂D
∂t
, (5.4)

where B = µ0H,D = ε0E, and ε0, µ0 are the electric perimttivity and magnetic
permeability of free space, and c = (µ0ε0)−1/2 is the speed of light in vacuum. The
EM field can be represented in terms of the vector and scalar potentials A and φ, as

E = −∇φ −
∂A
∂t
, (5.5)

B = ∇ × A, (5.6)

however there is no unique choice for these potentials as the measurable fields
(5.5)-(5.6) are invariant under the gauge transformation

A→ A + ∇χ, (5.7)

φ→ φ −
∂χ

∂t
. (5.8)

For the purposes of quantum optics the convenient choice is the Coulomb gauge
condition

∇ · A = 0, φ = 0. (5.9)

From (5.6) and (5.4) we find the wave equation for the vector potential

1
c2

∂2A(r, t)
∂t2 = ∇2A(r, t). (5.10)

Quantization of the field can proceed by finding a set of eigenmodes of this
classical equation and quantizing the mode amplitudes of the field in this basis.
Thus we apply the procedure of second quantization. Since the wave equation is
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5. Quantum Theory of the Electromagnetic Field

separable, we can separate the vector potential as A(r, t) = A(+)(r, t) + A(−)(r, t),
where

A(±)(r, t) =
∑

k

ckuk(r)e∓iωk t, (5.11)

where the mode functions satisfy∇2 +
ω2

k

c2

 uk(r) = 0, (5.12)

and, from (5.9), must also satisfy the Coulomb gauge condition

∇ · uk(r) = 0. (5.13)

As usual, dealing with the continuum introduces ultra-violet divergences in the
theory. We will thus consider a finite volume V , on which the mode functions form
a complete orthonormal basis:∫

V
d3r u∗k(r) · uk′ (r) = δk,k′ , (5.14)

and have a precise form determined by the boundary conditions assumed on V . For
a cubical volume V = L3 with periodic boundary conditions, the modes may be
written as

uk(r) = uk(r)êλk ≡ L−3/2eik·rêλk (5.15)

representing travelling-wave solutions of the wave equation. Here the unit vector êλk
is a unit polarisation vector, which according to (5.13), must satisfy

êλk · k = 0, (5.16)

describing two orthogonal axes transverse to the direction of propagation. The mode
index k denotes all the quantities required to specify a particular mode, namely
k = (λ,k), where λ = 1, 2, and

êλk · ê
λ′

k = δλ,λ′ . (5.17)

The allowed values of k are

kx =
2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
, nx, ny, nz = 0,±1,±2, . . . (5.18)

and from (5.12) the dispersion relation is (independent of polarisation)

ωk = c|k|. (5.19)

The vector potential and electromagnetic field can be written as

A(r, t) =
∑

k

(
~

2ωkε0

)1/2 [
ckuk(r)e−iωk t + c∗ku∗k(r)eiωk t

]
, (5.20)

E(r, t) = i
∑

k

(
~ωk

2ε0

)1/2 [
ckuk(r)e−iωk t − c∗ku∗k(r)eiωk t

]
, (5.21)

where now we have chosen normalisation so that the c-number amplitudes ck are
dimensionless. The dimensionless amplitudes may be chosen as our canonical

46



5.1. Quantization of the Electromagnetic Field

coordinates, and quantization is accomplished by the replacement ck → ak, c∗k → a†k ,
where the operators have boson commutation relations

[ak, ak′ ] = [a†k , a
†

k′ ] = 0, [ak, a
†

k′ ] = δk,k′ . (5.22)

We can now write the quantized fields in terms of these operators as

A(r, t) =
∑

k

(
~

2ωkε0

)1/2 [
akuk(r)e−iωk t + a†ku∗k(r)eiωk t

]
, (5.23)

E(r, t) = i
∑

k

(
~ωk

2ε0

)1/2 [
akuk(r)e−iωk t − a†ku∗k(r)eiωk t

]
, (5.24)

and similarly (although more cumbersome) for B. Starting from the classical
Hamiltonian of the electromagnetic field

HEM =
1
2

∫
V

d3r
(
ε0E2 + µ−1

0 H2
)
, (5.25)

and using (5.24) and the equivalent for H, and (5.13) and (5.14), we arrive at

HEM =
∑
k,λ

~ωk
(
a†k,λak,λ + 1

2

)
. (5.26)

Thus the quantum Hamiltonian for the free-space electromagnetic field is that of a
set of independent harmonic oscillators. Acting on the vacuum with the Hamiltonian,
we find

HEM |0〉 =
∑
k,λ

~ωk

2
|0〉 = ∞, (5.27)

and thus it would appear that the electromagnetic vacuum contains infinite energy.
This embarrassing divergence is a consequence of the way we have quantised the
Hamiltonian, and can be removed by normal ordering. However, the physical effects
of vacuum fluctuations are fundamental to numerous quantum phenomena, acting
to seed spontaneous quantum processes. In particular, the vacuum energy initiates
spontaneous emission of an excited atom, and can be measured via the Casimir
force that acts to push two parallel conducting plates together.

Reflecting upon the origin of (5.27), notice that it is the process of canonical
quantization that is ultimately to blame for this embarrassing divergence. It is
conventional in quantum field theory to introduce and work with the normally
ordered Hamiltonian

: HEM :=
∑
k,λ

~ωk a†k,λak,λ (5.28)

which removes the infinite (constant) vacuum correction to the ground state energy,
and has no observable effect on dynamical predictions. This is equivalent to insisting
that the vacuum state has zero energy:

HEM |vac〉 = 0. (5.29)
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5. Quantum Theory of the Electromagnetic Field

While the ground state energy can always be shifted by a convenient constant, the
physical effects of zero-point fluctuations are nevertheless fundamentally important
in quantum field theory.

Exercise 5.1: Harmonic oscillator Hamiltonian

Prove (5.26). You may find the identity ∇ × (∇ × A) = ∇(∇ · A) − ∇2A useful.

5.2 Atom-Light Interactions

The correct quantum formulation of the interaction of matter with electromagnetic
radiation is the most significant application of the method of canonical quantization.
In this section we shall outline the inclusion of electromagnetic forces within the
classical Lagrangian and Hamiltonian formalisms, and then proceed to the so-called
minimal coupling Hamiltonian.

5.2.1 Classical electromagnetic forces

The force on particle of charge e located at r(t) and moving with instantaneous (non
relativistic) velocity v(t) ≡ ṙ(t) is given by the Lorentz force law

F = eE + ev × B. (5.30)

The electrostatic part can be derived from a potential, while the magnetic part can
be derived from a velocity dependent potential within the Lagrangian formalism.
The correct Lagrangian1 giving the equation of motion for (5.30) is

L = T − eφ(r(t), t) + eA(r(t), t) · v, (5.31)

where, in the absence of sources,

E = −∇φ −
∂A
∂t
, (5.32)

B = ∇ × A. (5.33)

The canonical momentum is

p ≡ ∇vL = mv + eA, (5.34)

and this differs in a fundamental way from the kinetic momentum of a free particle.
Carrying out the transformation (2.26), the Hamiltonian is given by

H =
(p − eA)2

2m
+ eφ(r, t). (5.35)

Note that the magnetic force does not contribute to the energy as it is always
perpendicular to the velocity, doing no work on the particle.

1The proof is somewhat intricate, but highly instructive. See, for example, [2].
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5.2. Atom-Light Interactions

Exercise 5.2: Gauge Invariance
Introduce the transformation

A→ A + ∇χ, φ→ φ −
∂χ

∂t
. (5.36)

1. Show that the Lagrangian is changed by the total time derivative edχ/dt, and hence the equations of
motion are preserved.

2. Show that the canonical momenta derived for the new Lagrangian are correct.

3. Does the gauge transformation change the Hamiltonian?

Exercise 5.3: Particle in a uniform magnetic field
The vector potential for a uniform magnetic field B is given by A = 1

2 B × r.
1. Explain why the angular momentum is still given by L = r × p with p defined by (5.34).

2. Using the expressions for L and A, show that the interaction can be interpreted in terms of the
magnetic moment µ = eL/2m, provided the term proportional to A2 can be neglected.

3. Under what physical conditions can the A2 term be neglected?

5.2.2 Minimal coupling

We describe the electron-photon interaction using the minimal coupling Hamiltonian

H =
1

2m
(p − eA)2 + eφ(r) + HEM , (5.37)

where φ(r) is the Coulomb potential for an atom with nucleus localised at r = r0,
p is the momentum for electron with mass m, and A is the electromagnetic vector
potential. The EM-field is quantized, and described by (5.26). To develop a
quantum mechanical treatment of both electron and photon fields, we quantize the
electron wave field by expanding over an orthonormal basis of unperturbed electron
wavefuctions φn(r) with energies En as

ψ(r) =
∑

n

cnφn(r) (5.38)

where the electron operators are Fermionic

[cn, c†m]− = δnm, [c(†)
n , c(†)

m ]− = 0, (5.39)

and the index n runs over all quantum numbers required to specify the electronic
state. We now have the Hamiltonian

H = He + HEM + HInt, (5.40)

where

He =

∫
d3r ψ†(r)

(
−
~2∇2

2m
+ eV(r)

)
ψ(r) (5.41)

describes the motion of the electron in the nuclear electrostatic potential, and HI

describes the interaction between the electron and the light field. The interaction
can be decomposed as

HInt,1 = −
e

2m

∫
d3r ψ†(r) (p · A + A · p)ψ(r), (5.42)

HInt,2 =
e2

2m

∫
d3r ψ†(r)A2ψ(r). (5.43)
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5. Quantum Theory of the Electromagnetic Field

Provided the EM-field intensity is not large enough to favour two-photon processes
in the vacuum, the contribution from HInt,2 can be neglected, leaving HI ≡ HInt,2.
Noting that

p · A(r) − A(r) · p = −i~∇ · A(r) = 0 (5.44)

in the Coulomb gauge, we can then write the Hamiltonian as

HEM =
∑

k

~ωka†kak, (5.45)

He =
∑

n

Enc†ncn, (5.46)

HI = ~
∑
nlk

c†ncl

(
κnl

k ak + κnl∗
k a†k

)
, (5.47)

where, as in (5.11), k refers to both wave vector and polarisation of the EM mode
with annihilation operator ak, and the coefficients are

κnl
k = −

e
m

√
1

2~ωkε0

∫
d3r φ∗l (r) (uk(r) · p) φn(r). (5.48)

5.2.3 Electric dipole approximation

For most systems of interest there is a separation of length scales. The atomic scale
is of order ∼ 10−11m, while the wavelength of an optical photon is of order ∼ 10−6m.
Thus the mode functions φn(r) vary much more rapidly than uk(r), which may be
evaluated at r0 and taken out of the integral. We then have∫

d3r φ∗l (r)[uk(r) · p]φn(r) = uk(r0)êλk · 〈l|p|n〉, (5.49)

Since p = [r,p2]/2i~, and the unperturbed electron wave functions are energy
eigenstates, we can evaluate the matrix elements as

e〈l|p|n〉 =
m
i~
〈l|

r · p2 − p2 · r
2m

|n〉 = imΩnldnl, (5.50)

where

Ωnl =
El − En

~
, (5.51)

and

dnl ≡ e〈l|r|n〉 (5.52)

is the electric dipole operator. Hence, in the dipole approximation, the coupling
matrix elements are

κnl
k = −i

√
1

2~ωkε0
Ωnluk(r0)êλk · dnl (5.53)
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5.3. Cavity Quantum Electrodynamics

5.2.4 Interaction picture

To gain some insight as to the essential terms in the interaction we transform to the
interaction picture with respect to H0 = He + EEM , and find

ak(t) = e−iωk tak, cn(t) = e−iEnt/~cn, (5.54)

and the interaction Hamiltonian takes the form

HI = ~
∑
nlk

c†ncle−iΩnlt
(
κnl

k ake−iωk t + κnl∗
k a†keiωk t

)
. (5.55)

|gi

|ei

�



Figure 5.1: Two-level atom in an
optical cavity. By tuning the cavity
mode frequency to the atomic transi-
tion frequency, the system enters the
Jaynes Cummings regime, whereby
the rate of spontaneous emission into
the continuum, γ, is negligible com-
pared to the atom-cavity coupling rate,
κ.

5.2.5 Rotating wave approximation

When the atomic transition is near-resonant with a particular optical frequency,
Ωnl ≈ ωk, and the off-resonant terms in (5.55) that are proportional to e−(iΩnl+ωk)t

oscillate with very high frequency compared to the near-resonant terms. These
terms correspond to processes that involve high energy, such as the simultaneous
excitation of the atom and emission of a photon. In the rotating wave approximation
(RWA) these terms are neglected.

5.2.6 Two-Level Atom

We can make a drastic approximation and consider just two levels of the atom, the
ground state |g〉 and excited state |e〉 separated by energy ~Ωg,e ≡ ~Ω. Using the
properties of Pauli matrices, the two level atom Hamiltonian can be represented
in terms of raising and lowering operators. One can easily establish the mappings
c†2c1 → σ+, c†1c2 → σ−, and c†2c2 − c†1c1 → σz. In terms of these pseudo-spin 1/2
operators, the two level atom in the RWA and dipole approximations is described by
the Schrödinger picture Hamiltonian

H = 1
2~Ωσz +

∑
k

~ωka†kak + ~
∑

k

(
κkakσ+ + κ∗ka†kσ−

)
, (5.56)

where the couplings are reduced to

κk = −i

√
1

2~ωkε0
Ωuk(r0)êλk · dg,e. (5.57)

5.3 Cavity Quantum Electrodynamics

With careful engineering, an optical cavity can be used to manipulate the couplings
between particular cavity modes and specific atomic transitions. A regime of
fundamental interest for quantum optics occurs when a single mode is strongly
coupled to a single two-level atomic transition. This can be achieved with a small
cavity mode volume and a large dipole moment.

5.3.1 Jaynes Cummings Regime

The simplest situation that arises involves a two-level atom interacting with a single
mode of the electromagnetic field on resonance (ωk = ω ≡ Ω), whereby the system
is described by the Jaynes-Cummings Hamiltonian
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5. Quantum Theory of the Electromagnetic Field

H = ~Ω
(
a†a + 1

2σz

)
+ ~κ(σ+a + a†σ−) ≡ H0 + HI (5.58)

where the arbitrary phase of the mode uk(r0) has been chosen to make the coupling
real:

κ =

√
(êλk · de,g)2Ω

~ε0V
. (5.59)

The first term in (5.58) represents the free evolution of the two-level atom and optical
mode, and the second describes raising and lowering of the electron energy state via
absorption and emission of a photon respectively.

Note that since [H0,HI] = 0 we can move into the ineraction picture without
altering HI . For an atom initially in the excited state, the Hamiltonian couples the
n-photon cavity state |e, n〉 to the state |g, n + 1〉. The quantum state can be written as

|ψn(t)〉 = ce,n(t)|e, n〉 + cg,n+1(t)|g, n + 1〉, (5.60)

giving the equations of motion in the interaction picture

ċe,n(t) = −iΩncg,n+1(t), (5.61)
ċg,n+1(t) = −iΩnce,n(t), (5.62)

with Ωn = κ
√

n + 1, and the general solution

ce,n(t) = ce,n(0) cos Ωnt − icg,n+1(0) sin Ωnt, (5.63)
cg,n+1(t) = cg,n+1(0) cos Ωnt − ice,n(0) sin Ωnt. (5.64)

Figure 5.2: A pioneer in laser physics
and atom-light interactions, Shaoul
Ezekiel (1935-2015) developed the
first realization of a two-level atom in
1977, and measured the resonance flu-
orescence spectrum of the atom sub-
ject to an intense laser field.

For an initial atomic excited state with the cavity in the number state |n〉, the
probability of finding the atom in the excited state at a later time is

pe(t) = |〈e, n|ψn(t)〉|2 = |ce,n(t)|2 = cos2 Ωnt, (5.65)

and hence the atomic state undergoes cyclic emission and reabsorption from the
cavity mode. Note that if we compute the eigenstates of HI , they are the dressed
states

|±, n〉 =
1
√

2
(|e, n〉 ± |g, n + 1〉) (5.66)

with eigenvalues ±iΩn, and thus the interaction lifts the degeneracy between states
|e, n〉 and |g, n + 1〉 by introducing an energy splitting ∆n = 2Ωn. The degeneracy
is lifted even for an unoccupied cavity mode, and the separation ∆0 = 2κ is known
as the vacuum Rabi splitting, a consequence of the mode structure imposed by the
cavity.

5.3.2 Quantum Collapses and Revivals

Since we know that probabilities of individual number states of the photon field
evolve according to (5.65), we can consider the evolution of a coherent state, given
by the superposition of number states (3.20). If the atom is initially in the excited
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Figure 5.3: Collapses and revivals for a two-level atom on resonance with a single cavity
mode, for an initial coherent state with mean photon number 〈a†a〉 = n̄ = 10 (blue) and
n̄ = 100 (gray).

state, and interacting with a cavity mode initially in a coherent state, then (5.65)
becomes

pe(t) = 1
2

1 +

∞∑
n=0

e−n̄n̄n

n!
cos

(
2κ
√

n + 1t
) . (5.67)

Due to the Poisson distribution of photon number of a coherent state, there will be
a spread of Rabi frequencies of order ∼

√
n̄. An approximate evaluation of the sum,

valid for times t <
√

n̄/κ gives

pe(t) = 1
2

[
1 + cos (2κ

√
n̄ + 1t) exp

(
−

κ2t2n̄
2(n̄ + 1)

)]
, (5.68)

and the oscillations decay under a Gaussian envelope. In fact there is a partial revival
at τ ∼ 2π

√
n̄/κ, due to rephasing of the number states, a consequence of optical

coherence.

Exercise 5.4: Collapse envelope

Derive (5.68) by expanding
√

n + 1 around
√

n̄ + 1.

5.4 Casimir Force

Mode structure can have startling consequences, even in vaccuo. In 1948 Casimir
presented a paper entitled On the attraction between two perfectly conducting plates
to the Royal Netherlads Academy of Arts and Sciences. Casimir showed that the
abrupt change in the structure of the electromagnetic quantum vacuum caused by the
plates leads to a force of attraction between them. Although very small, this force
has been measured, strikingly demonstrating the existence and physical significance
of zero-point fluctuations.

Consider two perfectly conducting parallel plates, of side length Lx = Ly = L,
and thickness Lz = d. The conducting surfaces impose boundary conditions on the
modes of the EM field that are allowed between the plates, and most significantly,
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5. Quantum Theory of the Electromagnetic Field

the internal mode structure differs from the continuum of modes exterior to the
interstitial plate volume. The allowed frequencies are given by

ωlmn = πc
(

l2

L2 +
m2

L2 +
n2

d2

)1/2

, (5.69)

where l,m, n = 0, 1, 2, . . . . The zero-point energy in the box is then

E0(d) =

∞∑
l,m,n=0

( 1
2 )δl0+δm0+δn0 (2) 1

2~ωlmn

=

∞∑
l,m,n=0

( 1
2 )δl0+δm0+δn0π~c

(
l2

L2 +
m2

L2 +
n2

d2

)1/2

, (5.70)

where the factor of 2 accounts for two independent polarisations per mode, and the
Kronecker delta factors account for the modes where any one of l,m, n is zero, since
there is then only one independent polarisation. When L � d, the sums over l and
m may be replaced by integrals to give

E0(d) =
~cL2

π

∞∑
n=0

( 1
2 )δn0

∫ ∞

0
dx

∫ ∞

0
dy

(
x2 + y2 +

π2n2

d2

)1/2

. (5.71)

If d is taken to be very large, a similar replacement can be made to give

E0(d → ∞) =
~cL2

π2

d
π

∫ ∞

0
dx

∫ ∞

0
dy

∫ ∞

0
dz

(
x2 + y2 + z2

)1/2
. (5.72)

The potential energy of the system when the plates are separated by distance d is
U0(d) = E0(d) − E0(d → ∞), the energy required to bring the plates together from
a large separation to distance d:

U0(d) =
L2~c
π2

[ ∞∑
n=0

( 1
2 )δn0

∫ ∞

0
dx

∫ ∞

0
dy

(
x2 + y2 +

π2n2

d2

)1/2

−
d
π

∫ ∞

0
dx

∫ ∞

0
dy

∫ ∞

0
dz

(
x2 + y2 + z2

)1/2
]
. (5.73)

Changing to polar coordinates, and to the convenient variable s = r2, we have

U0(d) =
L2~c
4π

π3

d3

[ ∞∑
n=0

( 1
2 )δn0

∫ ∞

0
ds (s + n2)1/2 −

∫ ∞

0
dz

∫ ∞

0
ds (s + z2)1/2

]
.

(5.74)

Note that this is the difference between two infinite zero-point energies. We can cast
this in a more tractable form by introducing the function

F(u) ≡
∫ ∞

0
ds (s + u2)1/2, (5.75)

so that

U0(d) =
L2~cπ2

4d3

[
1
2 F(0) +

∞∑
n=1

F(n) −
∫ ∞

0
dz F(z)

]
. (5.76)
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The difference between integration and summation can be evaluated using the
Euler-Maclaurin formula [3]

∞∑
n=1

F(n) −
∫ ∞

0
dz F(z) = − 1

2 F(0) − 1
12 F′(0) + 1

720 F′′′(0) . . . (5.77)

obtained under the condition that F(∞) ≡ 0, necessitating the introduction of
an ultra-violet cutoff. That the result is independent of the cutoff should not be
surprising when we note that (5.75) is smooth for large u so that the difference
between summation and integration can only depend on the behaviour of F(u) for
small u. For (5.75), the derivatives are F′(0) = 0, F′′′(0) = −4, and F(n)(0) = 0 for
n > 3. Thus

U0(d) = −
π2~c

720d3 L2, (5.78)

Figure 5.4: Casimir force between
two parallel conducting plates. The
mode density between the plates is
less than that outside, and hence vac-
uum fluctuation forces acting on ei-
ther side of each plate do not balance,
causing a net attractive force. The
force was measured by Sparnaay in
1957. A classical analogue of the
force acts to push two boats together.
While the latter force does not stem
from vacuum fluctuations, it origi-
nates from the modified mode struc-
ture of surface waves caused by the
vessels.

and the Casimir force per unit area F(d) = −∂dU0(d) is

F(d) = −
π2~c

240d4 . (5.79)

The same result can be derived in terms of the radiation pressure exerted by zero-
point virtual photons carrying linear momentum 1

2~k for each polarisation mode
with frequency ~ωk = c|k|. The photons reflected from the exterior of the plates
generate slightly higher force than those reflected from the interior. The Casimir
force was measured by Sparnaay in 1957. In summarising his impression in 1960,
DeWitt captured the impact of the discovery:

“What startled me, in addition to the crazy idea that a pair of electrically neutral
conductors could attract one another, was the way in which Casimir said the force
should be computed, namely, by examining the effect on the zero-point energy of
the electromagnetic vacuum cased by the mere presence of the plates. I had always
been taught that the zero-point energy of a quantized field was unphysical ...”
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6 Fundamental Processes in Quantum
Optics

6.1 Quantum Beam Splitter

a

b

a✓

b✓

+/�

Figure 6.1: An ideal quantum beam
splitter — the device acts as a coher-
ent and linear transformation for two
input modes. The modes can be in any
quantum state, including the vacuum.

A beam splitter is a linear optical element that splits a beam of light in two.
The beam splitter acts on incoming modes of the electromagnetic field, creating a
new linear combination of the modes as outputs. As a simple and physical model
of a lossless beam splitter, consider two distinct input modes described by the
Boson annihilation operators a and b. As our starting point we shall describe
the transformation introduced by the beam splitter in the Heiseberg picture. The
transformation is unitary, and the beam splitter induces a 90◦ phase shift upon
reflection, so that the output modes are described by the destruction operators

aθ = cos θa + i sin θb, (6.1a)
bθ = cos θb + i sin θa. (6.1b)

In this linear transformation of the input modes, T = cos2 θ = 1−sin2 θ = 1−R give
the transmittance and reflectance respectively. Expressing the coefficients in terms
of an angle θ encodes the fact that the beam splitter is lossless (the transformation is
unitary). While this model is introduced along very general lines, in fact it provides
a very accurate description of the action of a lossless beamsplitter on input photons.

In direct analogy to the definition of the time evolution operator, the beam splitter
transformation is generated by the unitary operator

S (θ) = exp
(
iθ[a†b + b†a]

)
, (6.2)

where we use the notation S (θ) here, but there is a direct correspondence to U(t)
for some effective Hamiltonian.

In terms of the two-mode input state |in〉, in the Schrödinger picture the output
state is determined by the unitary transformation as

|out〉 = S (θ)|in〉, (6.3)

and the operators are unchanged. In the Heisenberg picture, the state kets are
preserved, and instead the operators evolve according to

aθ = S †(θ)aS (θ), (6.4a)

bθ = S †(θ)bS (θ). (6.4b)
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6. Fundamental Processes in Quantum Optics

where again, S (θ) plays the role of time evolution. It is a straightforward task
to show that (6.4), and (6.1) are consistent with our postulated form of S (θ) [In
Exercise 7.1 you will confirm that (6.2) is consistent with (6.1)].

Exercise 6.1: Quantum beam splitter transformation in the Heisenberg picture

Confirm (6.4a) and (6.4b) by differentiating and using the form of the transformed operators (6.1a),
(6.1b). A constructive proof of (6.2) requires an exponential ansatz for S (θ), that is linear in both creation
and annihilation operators, and a similar procedure.

Exercise 6.2: Splitting a coherent state

Working in the Schrödinger picture, show that for coherent state inputs |in〉 = |α〉⊗|β〉, the output state
is a new product of coherent states |out〉 = |αθ〉⊗|βθ〉, with coherent state amplitudes αθ = α cos θ+iβ sin θ,
βθ = β cos θ + iα sin θ. Hence, if a coherent state input is mixed with a vacuum input on a beam splitter,
|in〉 = |α〉 ⊗ |0〉 , the output state is |out〉 = |α cos θ〉|iα sin θ〉.

6.1.1 Splitting a Single Photon

As an interesting example, consider the action of the beam-splitter on a one-photon
input

|in〉 = |1, 0〉 = a†|0, 0〉. (6.5)

The beam splitter transforms this into the output state

|out〉 = S (θ)|in〉 = S (θ)a†|0, 0〉

= S (θ)a†S †(θ)S (θ)|0, 0〉

= a†
−θ|0, 0〉 = cos θ|1, 0〉 + i sin θ|0, 1〉, (6.6)

where we have used the fact that S (θ)|0, 0〉 = |0, 0〉. Thus the output state is a
superposition of two possible paths the photon can take, with a relative phase
between transmission and reflection. A photo-detection measurement would report
that the photon went either along one path or along the other.

6.1.2 Hong-Ou-Mandel Effect

Another immediate example is given by the two-photon input state |in〉 = |1, 1〉. We
have

|out〉 = a†
−θb
†

−θ|0, 0〉 = (cos θa† + i sin θb†)(cos θb† + i sin θa†)|0, 0〉,

= |1, 1〉 cos 2θ +
i
√

2
(|2, 0〉 + |0, 2〉) sin 2θ. (6.7)

For a 50:50 beam splitter (θ = π/4), the photons are transmitted in a pair into either
port, while the other port remains in the vacuum state. This is a consequence of
destructive interference between the different possible paths occurring in two-photon
reflection and transmission.
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6.2. Squeezing

6.2 Squeezing

Thus far our discussion has focussed on linear quantum optics, in the sense that the
effective Hamiltonian in (6.2) is at most linear in a(†) or b(†). Nonlinear interactions
play a fundamental role throughout physics. The essential nature of nonlinearity
is readily apparent in Quantum Optics, where the simplest nonlinear interaction
Hamiltonian introduces a fascinating new process, called squeezing.

�(n)

Figure 6.2: Cavity photons undergo
interactions induced by a nonlinear
crystal.

In free space, the photon-photon interaction process is very weak, requiring
specific materials to create nonlinear interactions. Consider an optical cavity with
a single mode of frequency ω to which we introduce a nonlinear medium that can
generate parametric down-conversion. In this process, input photons with frequency
2ω are converted into pairs of photons with frequency ω, coinciding with the cavity
mode frequency. This is known as a χ(2) effect, due to its description in terms of a
second-order optical susceptibility. The Hamiltonian for the system comprised of
input field and cavity field takes the form

H = ~ωa†a + 2~ωb†b + i~χ(2)
[
ba†2 − b†a2

]
, (6.8)

where the overlap of the spatial mode of the pump field and the cavity mode has
been absorbed into χ(2). We can now make a semi-classical approximation for the
pump field, assuming that it is in a coherent state with amplitude β that evolves, in
the Schrödinger picture, as |βe−i2ωt〉. We may then replace b→ βe−i2ωt, and, using
the parameter χ to absorb both χ(2) and the classical driving field amplitude, the
effective Hamiltonian for the cavity mode can be written as

H = ~ωa†a +
i~χ
2

(
a†2e−2iωt − a2e2iωt

)
≡ H0 + HInt. (6.9)

Moving into the interaction picture with respect to H0, the interaction Hamilto-
nian becomes time-independent:

HInt,I =
i~χ
2

(
a†2 − a2

)
, (6.10)

a consequence of driving the cavity at the specific frequency 2ω. We can now
focus on the quantum dynamical problem defined by (6.10). This may be solved by
considering the Heisenberg equations of motion

ȧ(t) = −
i
~

[a(t),HInt,I] = χa†(t), ȧ†(t) = χa(t), (6.11)

with solutions given by

a(t) = a(0) cosh (χt) + a†(0) sinh (χt), (6.12)

and its Hermitian conjugate. Note that the generator of time evolution is

U(t) = exp
(
χt[a†2 − a2]/2

)
, (6.13)

so that in the Schrödinger picture the state of the cavity mode is

|ψ, t〉 = U(t)|ψ, 0〉, (6.14)
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6. Fundamental Processes in Quantum Optics

while in the Heisenberg picture the operator solution (6.12) is equivalent to

a(t) = U†(t)a(0)U(t). (6.15)

Exercise 6.3:

Differentiate (6.15), and use (6.12) to confirm that (6.13) generates the same time evolution as given
by the Heisenberg equations of motion. Comment on the use of time arguments for the operators.

6.2.1 Quadrature Squeezing

To gain some insight into the role of this interaction, we note from (6.12) that
a(t) + a†(t) = [a(0) ± a†(0)]e±χt, so that these choices of operators simplify the time
evolution. To ensure the transformation is canonical, we introduce the quadrature
operators

X(t) = a(t) + a†(t), Y(t) = i[a†(t) − a(t)], (6.16)

that satisfy

[X,Y] = 2i. (6.17)

For these operators, the uncertainty principle reads

∆X∆Y ≥ 1. (6.18)

�Y

�X

�X�Y = 1

Figure 6.3: The Hamiltonian (6.10)
evolves an initial minimum uncer-
tainty state, with equal uncertainties
in both quadratures, to a minimum un-
certainty state with increased fluctua-
tions in ∆X, and reduced fluctuations
in ∆Y .

States that satisfy ∆X∆Y = 1 are known as minimum uncertainty states, an important
example of which are the coherent states. These operators evolve according to

X(t) = eχtX(0), Y(t) = e−χtY(0), (6.19)

and similarly for the uncertainties:

∆X(t) = eχt∆X(0), ∆Y(t) = e−χt∆Y(0). (6.20)

Hence the interaction (6.10) takes any input state and contracts one quadrature,
while expanding the other, so as to maintain the initial uncertainty product. Hence,
initial minimum uncertainty states become squeezed, reducing the uncertainty in
one quadrature below the vacuum level, at the expense of the other quadrature.
Measurements using squeezed light can thus beat the standard quantum limit, and
this principle is behind the pursuit of ultra-precise measurements of gravity waves.

6.2.2 Squeezed Vacuum

Finally, we consider the time evolution of an initial vacuum state. In general there
are disentangling theorems for operators of the form (6.13), that recast the time
evolution in a convenient form involving normally ordered operator products. For
the evolution of an initial vacuum state |vac, 0〉, we can make use of the formal
solution (6.12) by noting that in general

a(0)|vac, 0〉 = 0, (6.21)
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6.3. Two-Mode Squeezing

and so

U(t)a(0)U†(t)U(t)|vac, 0〉 = a(−t)|vac, t〉 = 0. (6.22)

For the squeezing evolution

cosh(χt)a(0)|vac, t〉 = sinh(χt)a†(0)|vac, t〉. (6.23)

Expanding the ket |vac, t〉 in number states, we can obtain a recursion relation,
eventually giving the result

|vac, t〉 = N

∞∑
n=0

(
tanh(χt)

2

)n √(2n)!
n!

|2n〉 =
1√

cosh (χt)
exp

(
1
2

tanh(χt)a†2
)
|0〉

(6.24)

Hence the squeezed vacuum only involves even photon number states, as should be
apparent from (6.10).

Exercise 6.4: Squeezed vacuum

Derive (6.24).

6.3 Two-Mode Squeezing

The process described by (6.8) is also referred to as the degenerate parametric
amplifier, since both low frequency photons are created in the same mode. The
non-degenerate parametric amplifier Hamiltonian is

H = ~ω1a†1a1 + ~ω2a†2a2 + i~χ
(
a†1a†2e−i(ω1+ω2)t − a1a2ei(ω1+ω2)t

)
. (6.25)

The system now involves non-degenerate down-conversion of a classical pump field.
The interaction Hamiltonian in the interaction picture is

HInt,I = i~χ
(
a†1a†2 − a1a2

)
, (6.26)

giving equations of motion

ȧ1 = χa†2, ȧ†2 = χa1, (6.27)

and the solutions

a1(t) = a1 cosh (χt) + a†2 sinh (χt), (6.28)

a2(t) = a2 cosh (χt) + a†1 sinh (χt). (6.29)

Carrying out the same recursion relation approach as above, where now the expan-
sion is over the two-mode number states |n,m〉 = |n〉1 ⊗ |m〉2, we can find the action
of the time evolution operator

U(t) = exp
[
χt

(
a†1a†2 − a1a2

)]
(6.30)
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6. Fundamental Processes in Quantum Optics

on the vacuum state as

|vac, t〉 = (cosh χt)−1
∞∑

n=0

(tanh χt)n|n, n〉. (6.31)

Figure 6.4: John Kerr (1824-1907)
was a Scottish physicist and a pioneer
in the field of electro-optics. He is
best known for the discovery of what
is now called the Kerr effect (1877).

If we now compute the reduced density matrix for either mode (see Chapter 7 if
you have not encountered the density matrix)

ρ j(t) = tr2− j {|vac, t〉〈vac, t|} , j = 1, 2, (6.32)

we find

ρ j(t) = (cosh χt)−2
∞∑

n=0

(tanh χt)2n|n〉 j j〈n|. (6.33)

This is recognised as a thermal state with mean photon number n̄ = sinh2 χt. The
quantum state so created is closely linked to the Hawking effect where correlated
pairs of quanta are created near an event horizon, with one particle lost inside
the event horizon, while the other escapes. By tracing over a subsystem (in the
analogy, the modes interior to the event horizon), the two-photon correlations are
lost, generating an incoherent output akin to the thermal radiation emitted from a
black hole.

Exercise 6.5:

Derive (6.31) and (6.33). Show that this is equivalent to the thermal state with mean occupation
n̄ = sinh2 χt. Hint: since the interaction Hamiltonian creates and destroys pairs of quanta and acts on
the vacuum, it is sufficient to expand in the basis |n, n〉 = |n〉1 ⊗ |n〉2.

6.4 Kerr Effect

A realisation of a fundamentally important interaction Hamiltonian is provided in
the context of quantum optics by the Kerr effect, occurring when photons interact
in a χ(3) medium. For a single mode system, such as an optical cavity mode, the
interaction Hamiltonian in the interaction picture is

HInt,I =
~χ

2
a†2a2. (6.34)

This number-conserving evolution leads to shear of the quantum state in phase space.
An understanding of the Kerr effect provides insights into the quantum evolution
of Bose-Einstein condensates, since (6.34) provides a prototypical Hamiltonian
describing a single-mode BEC subject to S-wave two-body interactions (scattering
theory in the cold-collision regime will be explored in Chapter 9). Notice that
[a†a,HInt,I] = 0, and hence the photon number operator is a constant of the motion.

The Heisenberg equation of motion is

da
dt

= −iχa†aa. (6.35)
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6.4. Kerr Effect

with solution

a(t) = e−iχa†ata(0). (6.36)

hXi

hY i

2↵

Figure 6.5: Evolution of an initial co-
herent state according to the Hamilto-
nian (6.34), whereby initial intensity
fluctuations (∆X) are converted into
phase fluctuations (∆Y). The quadra-
ture variances are represented by el-
lipses, and the quantum state is shown
on the phase-space plane defined by
the mean quadratures.

While number states do not develop in time (apart from a trivial phase), it is inter-
esting to consider the evolution of an initial coherent state |ψ, 0〉 = |α〉, modelling an
intense laser field driving the χ(3) medium, or approximating the quantum state of
a Bose-Einstein condensate of atoms occupying a single spatial mode. Using the
expansion in number states we have

a(t)|α〉 =
(
e−iχa†ata(0)

)
|α〉 = α|αe−iχt〉, (6.37)

recovering a new coherent state with time dependent amplitude. Iterating this
expression gives the general result

a(t)p|α〉 = αpe−iχp(p−1)t/2|αe−iχpt〉. (6.38)

Using the overlap of coherent states 〈α|β〉 = eα
∗β−|α|2/2−|β|2/2, we find for a coherent

initial state

〈ap(t)〉 = αp exp
[
−iχp(p − 1)t/2 − |α|2(1 − e−ipχt)

]
, (6.39)

allowing evaluation of the dynamics of observables.
In the Schrödinger picture, a number state will evolve as

|n, t〉 = exp [−iχn(n − 1)t/2]|n〉, (6.40)

from which we find that an initial coherent state |α〉 evolves into

|α, t〉 = e−|α|
2/2

∞∑
n=0

αn

n!
exp [−iχn(n − 1)t/2]|n〉. (6.41)

Choosing the phase of the initial state such that α is a real number, and using
either (6.39) or (6.41) we can find exact expressions for the mean and variance
V(X) = 〈X2〉 − 〈X〉2 of the quadratures:

〈X(t)〉 = 2αe|α|
2(cos χt−1) cos

(
|α|2 sin χt

)
, (6.42a)

〈Y(t)〉 = 2αe|α|
2(cos χt−1) sin

(
|α|2 sin χt

)
, (6.42b)

V(X) = 1 + 2|α|2
[
1 + e|α|

2(cos 2χt−1) cos
(
χt + |α|2 sin 2χt

)
− 2e2|α|2(cos χt−1) cos2

(
|α|2 sin χt

) ]
, (6.42c)

V(Y) = 1 + 2|α|2
[
1 − e|α|

2(cos 2χt−1) cos
(
χt + |α|2 sin 2χt

)
− 2e2|α|2(cos χt−1) sin2

(
|α|2 sin χt

) ]
. (6.42d)

These analytic expressions for the quadratures show an essential effect of the Kerr
Hamiltonian, namely that it couples intensity fluctuations to phase fluctuations. For
short times χt � 1 one finds that the interaction reduces V(X) below its initial value
of 1 while V(Y) is increased, so that intensity fluctuations are reduced at the expense
of increased phase fluctuations [Ex 5.6]. This process is illustrated in Figure 6.4.
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Exercise 6.6: Evolution of quadratures

1. Prove (6.37), (6.38), and (6.39) for a coherent initial state.

2. Using (6.39), derive (6.42a) and (6.42c).

3. Consider an initial coherent state with α chosen as a real number. Assuming a large amplitude
coherent state |α| � 1, for short times χt � 1, find a linearised expression for V(X), V(Y), and thus
show that V(X) decreases while V(Y) increases due to (6.34).
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7 The Density Matrix and Quantum
Statistics

The most general description of a quantum system includes both quantum and
statistical uncertainty, enabling the description of any additional uncertainty in
specifying the quantum state. Such a formation is provided by the density matrix
introduced by Von Neumann as a means of describing the statistical state of a
quantum system. The density matrix functions as the quantum mechanical analogue
of the phase space probability measure of a classical system and provides a natural
framework for treating open quantum systems.

If we carry out a measurement of an observable A on a system in a pure state
|ψ〉, then we know that, the probability of obtaining the value a is given by |〈a|ψ〉|2,
where A|a〉 = a|a〉. The reason why we cannot say with certainty what the value of
the observable will be is due to the fundamental nature of the disturbance caused by
the measuring process itself, rather than any lack of information. We also know that
the average value of the observable is given by

〈A〉 = 〈ψ|A|ψ〉 (7.1)

For the case in which the state of the system is not precisely known (i.e., the system
could be in any one of a number of states), we have what is called a mixed state. If
we know the probabilities, Pa, for the system being in states, |ψa〉, then the average
of A is

〈A〉 =
∑

a

Pa〈ψa|A|ψa〉 (7.2)

7.1 Density Matrix for Arbitrary States

For a system with state vector |ψ, t〉, which can be written as a linear combination
of the basis eigenkets | j〉, we define the density matrix for the system by the outer
product

ρ(t) = |ψ, t〉〈ψ, t|. (7.3)

Using this, we can rewrite (7.1) as

〈A〉 =
∑

j

〈ψ, t| j〉〈 j|A|ψ, t〉 =
∑

j

〈 j|A|ψ, t〉〈ψ, t| j〉 =
∑

j

〈 j|Aρ(t)| j〉

≡ Tr (Aρ) , (7.4)

where the last expression serves to define the trace operation as the sum over
diagonal matrix elements in any basis. The trace can be applied to any operator. It
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is easy to show that the trace operation gives the same result in any basis. Consider
two distinct complete basis representations |λ〉, | j〉. Then

Tr (Aρ) =
∑

j

〈 j|Aρ| j〉 (7.5)

In the |λ〉 basis, this reads

Tr (Aρ) =
∑
λ

〈λ|Aρ|λ〉 =
∑
j, j′,λ

〈λ| j〉〈 j|Aρ| j′〉〈 j′|λ〉 =
∑
j, j′,λ

〈 j|Aρ| j′〉〈 j′|λ〉〈λ| j〉

=
∑
j, j′
〈 j|Aρ| j′〉〈 j′| j〉 =

∑
j

〈 j|Aρ| j〉, (7.6)

where the equivalence is equally valid for continuous eigenvalues provided sums are
replaced by integrals. For caculational expedience, we should also note a convenient
property of the trace, namely that the trace of any outer product is none other than
the inner product:

Tr (|ψ〉〈φ|) =
∑

j

〈 j|ψ〉〈φ| j〉 = 〈φ|ψ〉. (7.7)

In general, the state of the system is not precisely known, i.e., we cannot say
with certainty that the system is in the pure state |ψ, t〉. This uncertainty can be
accounted for by the set of statistical probabilities Pa for the system being in states
|ψa〉. Then we can rewrite (7.2) as

〈A〉 =
∑

a

∑
j

Pa〈ψa| j〉〈 j|A|ψa〉 =
∑

a

∑
j

Pa〈 j|A|ψa〉〈ψa| j〉 =
∑

j

〈 j|Aρ| j〉

= Tr (Aρ) (7.8)

where we introduce the general definition of the density operator,

ρ ≡
∑

a

Pa|ψa〉〈ψa|. (7.9)

The advantage of using the density operator is that it contains in a rather compact
form both the statistical and quantum mechanical information about the system.

7.2 Properties of the Density Operator

For all forms of the density operator, there are a number of general properties:

ρ† = ρ, (7.10a)
Tr (ρM) = Tr (Mρ) (7.10b)

Tr (ABC) = Tr (BCA) , (7.10c)
Tr (ρ) = 1, (7.10d)
〈A|ρ|A〉 ≥ 0, for any state |A〉, (7.10e)

Tr
(
ρ2

)
≤ 1. (7.10f)
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Note that since Pa is real and positive, (7.10e) shows that the diagonal matrix
elements of ρ must always be real and positive. Since the trace of ρ is 1, the diagonal
matrix elements of ρ in any representation must be real and lie between 0 and 1. The
proofs of (7.10a)-(7.10e) follow immediately from the definition. To prove (7.10f)
we insert the definition to find

Tr
(
ρ2

)
= tr

∑
a

Pa|ψa〉〈ψa|
∑

b

Pb|ψb〉〈ψb| =
∑

j

∑
a

∑
b

PaPb〈 j|ψa〉〈ψa|ψb〉〈ψb| j〉

=
∑

a

∑
b

PaPb|〈ψa|ψb〉|
2. (7.11)

However, we know that
∑

b Pb|〈ψa|ψb〉|
2 ≤ 1, and hence (7.10f) holds.

7.3 Density Operator Evolution

The equation of motion for the wavefunction |ψ, t〉 is Schrödinger’s equation, using
the appropriate Hamiltonian. The equation of motion for the density operator
depends whether we are considering an open system or the total system, but the
time evolution is rather different to that of operators representing observables. In the
Schrödinger picture the density operator evolves in time, while it is time-independent
in the Heisenberg picture.

Figure 7.1: John von Neumann
(1903-1957) was a pioneer of op-
erator theory in quantum mechan-
ics, among his many contributions to
mathematics, physics, and computer
science.

7.3.1 Von Neumann equation

In the case we are not dealing with an open system the corresponding equation
of motion for the density operator is derived from (7.9) by differentiating and
using Schrödinger’s equation to obtain von Neumann’s equation governing the time
evolution of the density operator

i~
∂ρ

∂t
= [H, ρ]. (7.12)

This description of quantum dynamics has the advantage that it may be readily
generalized to treat open quantum systems, and has a close formal analogy with
Liouville’s equation of motion for the classical phase space distribution.

Von Neumann’s equation can be exponentiated to give the formal solution

ρ(t) = e−iHt/~ρ(0)eiHt/~. (7.13)

Exercise 7.1: Derivation of von Neumann’s equation

Consider (7.9) defined by a set of probabilities Pa at t = 0, and derive (7.12) using the
Schrödinger equation.
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7.3.2 Interaction picture

The density operator evolution in the interaction picture follows from definition
(7.9) and the transformation of state kets:

ρI(t) = U†0(t)ρ(t)U0(t), (7.14)

with equation of motion

i~
∂ρI(t)
∂t

= [VI(t), ρI(t)]. (7.15)

7.4 Density Operator in Statistical Mechanics

The density operator is fundamental in the study of quantum statistical mechanics.
Any function of the Hamiltonian is a stationary solution of von Neumann’s equation,
and in particular

ρT ≡ Z(T )−1 exp
(
−

H
kBT

)
(7.16)

is a stationary solution. Normalization forces Z(T ) ≡ Tr
(
e−H/kBT

)
giving the

thermal equilibrium density matrix in the canonical ensemble.
The extension of the Gibbs ensemble to quantum mechanical systems is based

upon the von Neumann entropy defined as

S = −kBTr (ρ ln ρ) (7.17)

Exercise 7.2: Canonical ensemble

Show that (7.16) can be obtained by maximising (7.17) at constant T . Work in a basis that
diagonalises ρ, and impose the constraints of fixed E = 〈H〉 and Tr (ρ) = 1 using Lagrange multipliers.
The first constraint determines one multiplier as proportional to T−1 and the second gives a form for
Z(T ).

7.5 Examples of the Density Operator

7.5.1 Two level systems

A two level system can be written as a two element matrix with basis states,

|u〉 =

(
1
0

)
, |d〉 =

(
0
1

)
(7.18)

a) Pure State: For an arbitrary ket,

|a〉 = λa|u〉 + µa|d〉 (7.19)

68



7.5. Examples of the Density Operator

the density operator,

ρ =
∑

a

Pa

(
|λa|

2|u〉〈u| + λaµ
∗
a|u〉〈d| + |µa|

2|d〉〈d| + λ∗aµa|d〉〈u|
)
.

(7.20)

But since

|u〉〈d| =
(

1
0

) (
0 1

)
=

(
0 1
0 0

)
(7.21)

etc., we find

ρ =
∑

a

Pa

(
|λa|

2 λaµ
∗
a

λ∗aµa |µa|
2

)
. (7.22)

b) Completely Disordered State: If we require (7.19) to be normalized then
Tr (ρ) =

∑
a Pa(|λa|

2 + |µa|
2) = 1 provided |λa|

2 + |µa|
2 = 1. Considering λa and µa

to be completely random, then we can write

λa = eiφa cos θa

µa = eiχa sin θa

(7.23)

so that

ρ =
∑

a

Pa

(
cos2 θa

1
2 ei(φa−χa) sin(2θa)

1
2 e−i(φa−χa) cos(2θa) sin2 θa

)
(7.24)

If Pa are all the same and θa, φa, χa are all randomly and uniformly distributed over
all values in their ranges [0, 2π), then

∑
a Pa cos2 θa = 1

2 ,
∑

a Pa sin2 θa = 1
2 and∑

a Pa sin(2θa)ei(φa−χa) = 0, so that for a completely disordered state,

ρ = 1
2

(
1 0
0 1

)
(7.25)

c) General State: For a general spin 1/2 system, ρ can be written as a linear
combination of the Pauli matrices (3.31), and the 2 × 2 identity matrix. If P̂ is a unit
vector—the polarization vector—which points in the direction of the particle’s spin,
then the density operator can be written

ρ = 1
2 (1 + σ · P̂). (7.26)

Exercise 7.3: The polarization vector

Show that the polarization vector is given by P̂ = 〈σ〉 = Tr (σρ).

Exercise 7.4: Spins in a Magnetic Field at Temperature T

Suppose the Hamiltonian is H = 1
2~µB · σ and we choose the z axis along B, then we can write

H = 1
2

(
ε 0
0 −ε

)
, ε = ~µB (7.27)

Statistical mechanics tells us that the probability of occupying each of the states is proportional to

P(u) ∝ e−ε/2kT , P(d) ∝ eε/2kT . (7.28)
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Thus

ρ =
|u〉〈u|e−ε/2kBT + |d〉〈d|eε/2kBT

e−ε/2kBT + eε/2kBT ,

=
1

1 + e−ε/kBT

 e−
ε

kBT 0
0 1

 (7.29)

7.5.2 Harmonic Oscillator at Temperature T

Using the number state basis, the energy of the state |n〉 is (n + 1
2 )~ω. In this basis

the density operator in the canonical ensemble is diagonal, and can be written as

ρ = (1 − e−~ω/kT )
∞∑

n=0

e−n~ω/kT |n〉〈n| ≡
∞∑

n=0

P(n)|n〉〈n|, (7.30)

showing explicitly that ρ is diagonal in the number state basis. Note that
∑

n P(n) = 1,
as required.

Exercise 7.5: Single mode number fluctuations: photon antibunching

The number fluctuations in a single mode field can be quantified in terms of the normalised second-
order correlation function for the number operator n̂:

g(2) ≡
〈n̂2〉

〈n̂〉2
= 1 +

V(n) − n̄
n̄2 . (7.31)

where V(Â) ≡ 〈Â2〉 − 〈Â〉2 = 〈(Â − 〈Â〉)2〉, and n̄ = 〈a†a〉. Starting from (7.30):

1. Express the number distribution for (7.30) in terms of n̄ = 〈n〉.

2. Compute 〈n(n − 1)〉 and thus find the value of g(2) for a thermal state.

3. Do the same for a coherent state, and a number state.

7.6 Equivalence of Ensembles

Consider a system of polarized photons, which can be described by the same
formalism as for spin 1

2 particles. It is not possible to tell the difference between the
following ensembles:

i) A mixture of vertically plane-polarized photons in equal proportions, corre-
sponding to the states(

1
0

)
,

(
0
1

)
. (7.32)

ii) A mixture of horizontally plane polarized photons in equal proportions, corre-
sponding to the states

1
√

2

(
1
1

)
,

1
√

2

(
1
−1

)
. (7.33)
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iii) A mixture of circularly plane polarized photons in equal proportions, corre-
sponding to the states

1
√

2

(
1
i

)
,

1
√

2

(
1
−i

)
. (7.34)

It is easy to show that all of these correspond to exactly the same density operator

1
2

(
1 0
0 1

)
. (7.35)

In fact, any pair of orthogonal states mixed together in uniform proportions produces
the same density operator, that of a completely disordered state. Here we see that
the distinction between the classical probability , governed by the probabilities Pa

as introduced in (7.9) and the intrinsic quantum mechanical probability, determined
from the state vector, is not at all clear.

7.7 Reduced Density Operator

There is another way in which the state of the system may not be known exactly, and
this is when one is dealing with a subsystem of a larger system, which is in a pure
state. Such a subsystem is known as an open quantum system; that is, a quantum
system which communicates in a quantum way with the outside world.

Consider a system with sub-systems A, B, and total density matrix ρ. Let |m, A〉
and |n, B〉 form complete orthogonal bases for A and B, with eigenvalues denoted by
m and n respectively. Consider an operator OA that is a function of A operators only.
Then

〈OA〉 = Tr (OAρ) =
∑
m,n

〈m, A| ⊗ 〈n, B|OAρ|n, B〉 ⊗ |m, A〉

= trA (OAρA) , (7.36)

where we identify

ρA ≡ trB (ρ) =
∑

n

〈n, B|ρ|n, B〉, (7.37)

as the reduced density matrix for subsystem A, and trA/B denotes the trace over
subsystem A/B. Thus we can find the density matrix for a subsystem by “tracing
out” the remaining degrees of freedom of the total system. If the total system is in a
separable pure state |ψ〉 = |φA〉|φB〉, i.e. the subsystems of not entangled, then we
find the rather intuitive result ρA = trB(ρ) = trB(|φA〉|φB〉〈φB|〈φA|) = |φA〉〈φA|.

Note that ρA is clearly Hermitian, and thus it may be diagonalised by a unitary
transformation to give a set of eigenvectors |U, α〉 and eigenvalues Pα, such that∑
α Pα = 1. Hence it may be expressed as

ρA =
∑
α

Pα|U, α〉〈U, α|, (7.38)

and is a legitimate density operator in its own right.

71





8 Dissipation in Open Quantum Systems

8.1 Born-Markov master equation

|gi

|ei

System Reservoir

�(n)

Figure 8.1: An optical cavity and a
two level atom coupled to the electro-
magnetic continuum. The EM-field
acts as a reservoir, even at zero tem-
perature where vacuum fluctuations
seed spontaneous process. The EM-
field vacuum is responsible for natural
line width of atomic transitions, and
for the irreducible damping of an op-
tical cavity.

When describing real quantum systems, dissipation plays a fundamental role
in determining observations. To account for this fundamental physical process, we
consider a total system defined by the Schrödinger picture Hamiltonian

H = HS + HR + V (8.1)

where V describes the interaction, and HS and HR describe the free evolution of the
system and reservoir in the absence of the interaction. In the following we work
in the interaction picture, in which w(t) will denote the total density operator, and
V(t) = U†S (t)VUS (t) is the interaction Hamiltonian in the interaction picture. The
equation of motion is

dw
dt

= −
i
~

[V(t),w(t)]. (8.2)

Integrating gives the formal solution

w(t) = w(0) −
i
~

∫ t

0
dt1 [V(t1),w(t1)] (8.3)

and this may be reintroduced in (8.2) iteratively in the same manner as used to
obtain the Dyson series. The first iteration gives

dw
dt

= −
i
~

[V(t),w(0)] −
1
~2

∫ t

0
dt1 [V(t), [V(t1),w(t1)]]. (8.4)

The reduced density operator for the system is given by

ρ(t) = trR

{
w(t)

}
, (8.5)

and we can carry out the trace on both sides of (8.4) to give

dρ
dt

= −
i
~

trR

{
[V(t),w(0)]

}
−

1
~2

∫ t

0
dt1 trR

{ [
V(t), [V(t1),w(t1)]

] }
, (8.6)

an exact implicit equation of motion for the reduced density operator. We now
introduce the following simplifications:

i) Born approximation.— We assume that the system and reservoir are initially
uncorrelated, and remain so throughout the dynamics, so that the density
operator factorises as

w(t) = ρ(t) ⊗ ρR, (8.7)

and ρR is assumed independent of time. This is excellent approximation for
many systems of interest, and describes the physical situation when there is a
large reservoir upon which the system has little influence.
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8. Dissipation in Open Quantum Systems

ii) We assume that the interaction Hamiltonian has zero mean when averaged over
the reservoir

trR

{
V(t)ρR

}
≡ 0, (8.8)

as can always be arranged by including a non-zero trR

{
VρR

}
in the system

Hamiltonian. This assumption removes the first term in (8.6).

iii) Markov approximation.— The trace in (8.6) will involve averages of the form
〈Γ(t)Γ†(t1)〉R where Γ(t) is a reservoir operator. We assume that such two-time
correlations between reservoir operators decay very rapidly compared to the
timescale of evolution of the system. We can then make the replacement

ρ(t1)→ ρ(t) (8.9)

in the integrand. This is often an excellent description of the physical system,
and a canonical example is given by the damped optical cavity, where photons
exit the cavity on a very short timescale.

We thus arrive at the Born-Markov equation of motion for the reduced density
operator

dρ
dt

= −
1
~2

∫ t

0
dt1 trR

{ [
V(t), [V(t1), ρ(t) ⊗ ρR]

] }
. (8.10)

8.2 Damping to a Quantum Reservoir

Building on our earlier quantization of the electromagnetic field, we generalise
(5.56) and consider an interaction Hamiltonian of the form

V(t) = ~
(
Γ(t)A†(t) + Γ†(t)A(t)

)
. (8.11)

where

A(t) = Ae−iω0t, (8.12)

Γ(t) =
∑

k

κkbke−iωk t, (8.13)

where our reservoir modes satisfy (4.14), and where the index k = (k, λ) refers to
wave vector and an additional degree of freedom. For a two-level atom damped
to the EM-field, λ runs over the two independent polarisations for each k. For a
reservoir of electrons, λ runs over the two spin-state values for each k state.

We will assume that the modes are thermalized, which means that the quantum
density operator is Gaussian, with moments
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8.2. Damping to a Quantum Reservoir

trR

{
ρRb†jbk

}
= N̄(ωk)δ jk, (8.14)

trR

{
ρRb jb

†

k

}
=

[
1 + ζN̄(ωk)

]
δ jk, (8.15)

trR

{
ρRb jbk

}
= trR

{
ρRb†jb

†

k

}
= 0, (8.16)

and consequently

trR

{
ρRΓ†(t)Γ(t1)

}
=

∑
k

|κk |
2N̄(ωk)e−iωk(t1−t), (8.17)

trR

{
ρRΓ(t)Γ†(t1)

}
=

∑
k

|κk |
2
[
1 + ζN̄(ωk)

]
eiωk(t1−t), (8.18)

trR

{
ρRΓ(t)Γ(t1)

}
= trR

{
ρRΓ†(t)Γ†(t1)

}
= 0. (8.19)

Temporarily adopting the shorthand B = A(t), and B̄ = A(t1) for interaction picture
operators, and using (8.19), the master equation now reads

dρ
dt

=

∫ t

0
dt1

{
〈Γ†(t1)Γ(t)〉R

[
B†ρB̄ − ρB̄B†

]
+ 〈Γ(t)Γ†(t1)〉R

[
B̄ρB† − B†B̄ρ

]
〈Γ†(t)Γ(t1)〉R

[
B̄†ρB − BB̄†ρ

]
+ 〈Γ(t1)Γ†(t)〉R

[
BρB̄† − ρB̄†B

] }
.

(8.20)

We can now write this equation of motion in terms of Schrödinger picture operators,
since the time evolution in (8.12), (8.13) is trivial. It is clear from the form (8.17),
(8.18), and (8.12) that the correlation functions we require only depend on τ =

t − t1 allowing a change of variables to give the correlation functions [in order of
appearance in (8.20)]∫ t

0
dτ 〈Γ†(t − τ)Γ(t)〉Reiω0τ =

∫ t

0
dτ

∑
k

|κk |
2N̄(ωk)ei(ω0−ωk)τ, (8.21)∫ t

0
dτ 〈Γ(t)Γ†(t − τ)〉Reiω0τ =

∫ t

0
dτ

∑
k

|κk |
2
[
1 + ζN̄(ωk)

]
ei(ω0−ωk)τ, (8.22)

and their hermitian conjugates. At this point the validity requirement of the Markov
approximation can be restated as a condition that the timescale of decay of (8.21),
(8.22) is much shorter than the timescale over which the density operator evolves.

Exercise 8.1: Two-time reservoir correlations

Use the form of the interaction operators (8.12), (8.13), and the reservoir correlation functions (8.17),
(8.18), (8.19) to derive (8.20) from (8.10).

To further evaluate the correlation functions we can now use the following:

i) Continuum limit.— we replace the summations with integration over the density
of states:∑

k

|κk |
2N̄(ωk)ei(ω0−ωk)τ →

∑
λ

∫
d3k g(k)|κ(k, λ)|2N̄(ωk)ei(ω0−ωk)τ, (8.23)

where g(k) is density of states for modes with wave vectors k.
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8. Dissipation in Open Quantum Systems

ii) Delta-correlated reservoir.— as we are presuming a short reservoir correlation
time, we can take t → ∞ in the integrals and use the identity

lim
t→∞

∫ ∞

0
dτ eiωτ = πδ(ω) + iP

1
ω

(8.24)

where P is the Cauchy principle value. This identity must be used in the context
of an integral over a domain that includes the point ω = 0.

Putting all of this together, the correlation functions (8.21) and (8.22) now become

lim
t→∞

∫ t

0
dτ 〈Γ†(t − τ)Γ(t)〉Reiω0τ =

∫ ∞

0
dτ

∑
k

|κk |
2N̄(ωk)ei(ω0−ωk)τ

=
∑
λ

∫
d3k g(k)|κ(k, λ)|2N̄(ωk)

∫ ∞

0
dτ ei(ω0−ωk)τ

= 1
2γN̄(ω0) + i∆2, (8.25)

lim
t→∞

∫ t

0
dτ 〈Γ(t)Γ†(t − τ)〉Reiω0τ = 1

2γ
(
1 + ζN̄(ω0)

)
+ i∆1 + iζ∆2, (8.26)

where

γ = 2π
∑
λ

∫
d3k g(k)|κ(k, λ)|2δ(ω0 − ωk), (8.27)

∆1 =
∑
λ

P
∫

d3k
g(k)|κ(k, λ)|2

ω0 − ωk
, (8.28)

∆2 =
∑
λ

P
∫

d3k
g(k)|κ(k, λ)|2N̄(ωk)

ω0 − ωk
. (8.29)

Carrying out these steps, and transforming back to the Schrödinger picture, we
finally arrive at the master equation for damping to a quantum reservoir

dρ
dt

= −
i
~

[HS , ρ] − i∆1[A†A, ρ] − i∆2

[
[A†, A], ρ

]
(8.30a)

+
γ

2

(
1 + ζN̄

) (
2AρA† − A†Aρ − ρA†A

)
, (8.30b)

+
γ

2
N̄

(
2A†ρA − AA†ρ − ρAA†

)
. (8.30c)

Exercise 8.2: Deriving the master equation

Using (8.25), (8.26) and their hermitian conjugates, derive (8.30) from (8.20).

8.2.1 Interpretation of the Master Equation

i) System operators.— We have not specified the operators A, A†, except for the
requirement that the time evolution in the interaction picture takes the form
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8.3. Pumped, Damped Optical Cavity

(8.12). For a damped optical cavity the mode operator is that of a simple
harmonic oscillator, A = a, A† = a†, with [a, a†] = 1. For a radiatively damped
two-level atom, the operators are A = σ−, A† = σ+.

ii) Quantum statistics.— Depending on the kind of reservoir, set by ζ, we see a
clear distinction between Bose-enhancement of the damping rate by the factor
N̄(ω0) for Bosons, and Pauli blocking of the damping rate through the factor
[1 − N̄(ω0)] for Fermions. At T = 0, the term (8.30b) is responsible for
spontaneous emission of an atom into a vacuum radiation field (ζ = −1), and
here Pauli-blocking is evident when T > 0.

iii) Level shifts.— The shifts incurred from the principal value part of the inte-
grals are important in quantum optical settings, but may often be neglected in
dissipative transport phenomena involving massive particles.

iv) Nonlinear evolution.— If this system evolution is nonlinear, the derivation can
be carried through unchanged, provided the separation of timescales underpin-
ning the Markov approximation still holds. The physical reason is that nonlinear
evolution will typically be a small correction to the bare system evolution, over
the timescale of the reservoir interaction.

8.3 Pumped, Damped Optical Cavity

As a first example, consider an optical cavity with a single resonant optical mode.
The continuum of electromagnetic field modes exterior to the cavity form a quantum
environment for the simple harmonic oscillator with system Hamiltonian HS =

~ωa†a. We will add a coherent driving term (pumping from a laser field) in the form

HD = i~ε(a† − a), (8.31)

where by choosing ε to be real we have set the phase of the pump field. In this case
A → a, A† → a†, ζ = 1, and since [[a†, a], ρ] = 0 it is clear that ∆2 does not arise,
and we may collect the remaining frequency shift as ω̄ = ω0 + ∆1, and find the
equation of motion

dρ
dt

= −iω̄[a†a, ρ] + ε[a† − a, ρ] (8.32a)

+
γ

2

(
N̄(ω0) + 1

)
(2aρa† − a†aρ − ρa†a) (8.32b)

+
γ

2
N̄(ω0)(2a†ρa − aa†ρ − ρaa†). (8.32c)
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To see how to work with this master equation, consider first the case ε = 0. We then
find, in detail:

d〈a〉
dt

= Tr
(

dρ
dt

a
)

= −iω̄Tr
(
[a†a, ρ]a

)
+
γ

2
(N̄ + 1)Tr

(
2aρa†a − a†aρa − ρa†aa

)
+
γ

2
N̄Tr

(
2a†ρaa − aa†ρa − ρaa†a

)
(8.33)

= −ω̄〈aa†a − a†a2〉 +
γ

2
(N̄ + 1)〈2a†a2 − aa†a − a†a2〉

+
γ

2
N̄〈2a2a† − a2a† − aa†a〉 (8.34)

= −

(
iω̄ +

γ

2

)
〈a〉, (8.35)

where we use the cyclic property of the trace to get (8.34), and the commutator
to get (8.35). Hence, the mean amplitude undergoes exponential decay with rate
constant γ/2. If we consider the photon population, we find

d〈a†a〉
dt

= −γ
(
〈a†a〉 − N̄(ω0)

)
, (8.36)

with lifetime γ−1 and steady state solution 〈a†a〉 = N̄(ω0), corresponding to thermal
equilibrium between the cavity mode and the continuum. It is clear that in the steady
state, 〈a〉 = 0. For a single mode with given polarisation λ1, and cavity output that
does not mix polarisation, we can write the damping rate as

γ = 2π
∫

d3k g(k)|κ(k, λ1)|2δ(ω0 − |k|c) = 2π
∫ ∞

0
dω g(ω)|κ(ω, λ1)|2δ(ω0 − ω),

(8.37)

where we have used the density of states for frequency and the optical dispersion
ω = |k|c. We then find

γ = 2πg(ω0)|κ(ω0, λ1)|2, (8.38)

and the damping rate is set by the density of states and the coupling strength at
ω ≡ ω0.

Exercise 8.3: Steady state for a zero-temperature environment

Writing (8.32) in the interaction picture with respect to ω̄, for a driven cavity mode damping to a
zero temperature environment, N̄ ≡ 0, ε > 0,show that in the steady state 〈a〉 = 2ε/γ.

8.4 Two-level Atom

For a two-level atom with states |1〉 and |2〉 interacting with the electromagnetic
continuum, we set up a correspondence with the Hamiltonian (5.56) by taking
A = σ−, and A† = σ+, giving the system Hamiltonian

HS = 1
2~Ωσz. (8.39)

Here ζ ≡ 1 sets the quantum statistics of the reservoir modes as bosonic.
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We obtain the master equation

dρ
dt

= −i 1
2 Ω̄[σz, ρ] (8.40a)

+
γ

2

(
N̄(Ω) + 1

)
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−) (8.40b)

+
γ

2
N̄(Ω) (2σ+ρσ− − σ−σ+ρ − ρσ−σ+) , (8.40c)

where Ω̄ = Ω + ∆1 + 2∆2 includes the level shifts. Let us now evaluate the terms in
this equation.

8.4.1 Damping rate: Einstein A coefficient

Adopting spherical coordinates in k-space, the density of states for each λ is given
by

g(k)d3k =
ω3V
8π3c3 dω sin θdθdφ. (8.41)

We then find, from (8.27) and (5.57), that

γ = 2π
∑
λ

∫ ∞

0
dω

∫ π

0
sin θdθ

∫ 2π

0
dφ

ω2V
8π3c3

ω

2~ε0V
(êλk · d12)2δ(ω −Ω) (8.42)

=
Ω3

8π2ε0~c3

∑
λ

∫ 2π

0
dφ

∫ π

0
sin θdθ(êλk · d12)2. (8.43)

For each k we are free to orient our k axes by choosing the kz axis along d12, and
k · êλ2

k = 0. We then have (k · êλ1
k )2 = d2

12(1 − cos2 θ), and∫ 2π

0
dφ

∫ π

0
sin θdθ(êλ1

k · d12)2 = d2
122π

∫ π

0
dθ sin θ(1 − cos2 θ) (8.44)

=
8π
3

d2
12. (8.45)

We thus arrive at the expression for the damping rate

γ =
1

4πε0

4Ω3d2
12

3~c3 . (8.46)

this is the Einstein A coefficient giving the atomic spontaneous emission rate in
laser theory, as should be clear from its role in (8.40b).

8.4.2 Lamb Shift

he term that is independent of temperature, ∆1, is known as the Lamb shift, an effect
of zero-point field fluctuations interacting with the electron. These fluctuations give
rise to spontaneous emission and are a source of quantum noise, and of the natural
line width of atomic transitions. In fact, the rotating wave approximation that we
are currently using does not give the correct non relativistic expression for the Lamb
shift, and we must also account for the off-resonant interaction terms. The correct
result is given by making the replacement (Ω − kc)−1 → (Ω − kc)−1 + (Ω + kc)−1 in
(8.28).
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8.4.3 Stark Shift

The term proportional to N̄(Ω), ∆2, gives a temperature-dependent level shift caused
by the AC Stark effect. The effect is typically not large for optical transitions. In
practice it is often a very reasonable approximation to ignore both shifts as they are
typically not significant, so that hereafter we take Ω̄ ≡ Ω.

Exercise 8.4: Level shifts
Show that by removing the RWA via the procedure given above, we arrive at the level shifts

∆1 =
1

4πε0

2d2
12

3~πc3 P
∫ ∞

0
dω ω3

(
1

Ω − ω
+

1
Ω + ω

)
, (8.47)

and

∆2 =
1

4πε0

2d2
12

3~πc3 P
∫ ∞

0
dω ω3

(
1

Ω − ω
+

1
Ω + ω

)
1

e~Ω/kBT − 1
. (8.48)

8.4.4 Spontaneous decay

For spontaneous emission we need only consider the regime T = 0, and so N̄ = 0.
Neglecting the level shifts, the equation of motion for the atomic coherence 〈σ−〉 is
then found from (8.40) to be

d〈σ−〉
dt

=
(
−iΩ − 1

2γ
)
〈σ−〉, (8.49)

with solution

〈σ−(t)〉 = exp
[
−

(
iΩ + 1

2γ
)

t
]
〈σ−(0)〉. (8.50)

The probability of the atom being in the excited state is P2(t) = ρ22(t) = 〈σ+(t)σ−(t)〉.
The equation of motion is

dP2(t)
dt

= −γP2(t), (8.51)

so that the probability decays exponentially with rate γ. This rate agrees with that
found by Wigner and Weisskopf in the theory of natural line width.
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9 Scattering Theory

Scattering is the study of the unbound states of a system of two interacting particles,
in other words, of the continuous spectrum. From a more experimental point
of view, it is a way of probing the interactions between particles by measuring
their interaction as they pass near each other. The subject is very extensive, and
fundamental to the practical applications of quantum mechanics.

9.1 Scattering of Two Particles

We consider the scattering of particles with no internal degrees of freedom, and
assume initially that they are distinguishable, with masses m1 and m2. We consider
here only particles interacting by means of a potential which is a function of the
co-ordinate differences. In this case, it is possible to separate completely the centre
of mass motion from the relative motion. After this separation, the relative motion is
equivalent to a one-body Schrödinger equation for a particle with the reduced mass
µ = m1m2/(m1 + m2).

9.1.1 Centre of mass coordinates

We consider two particles of masses m1 and m2, which satisfy the two-body
Schrödinger equation

EtotΨ(r1, r2) =

{
−
~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V(r1 − r2)
}

Ψ(r1, r2) (9.1)

We introduce the variables

R ≡
m1r1 + m2r2

m1 + m2
, r ≡ r1 − r2, M ≡ m1 + m2, µ ≡

m1m2

m1 + m2
. (9.2)

From these it follows that

∇R = ∇r1 + ∇r2 , ∇r =
m1∇r2 − m2∇r1

m1 + m2
, (9.3)

−
~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V(r1 − r2) = −
~2

2M
∇2

R −
~2

2µ
∇2

r + V(r). (9.4)

9.1.2 Separation of Variables

If we write the wavefunction as

Ψ(r1, r2) = Φ(R)ψ(r), (9.5)
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then we can separate the Schrödinger equation as

−
~2

2M
∇2

RΦ(R) = ECMΦ(R), (9.6){
−
~2

2µ
∇2

r + V(r)
}
ψ(r) =

~2k2

2µ
ψ(r), (9.7)

Etot = ECM + ~2k2/2µ. (9.8)

The centre of mass equation of motion corresponds to free motion, leaving the
description of interactions only in the relative motion Schrödinger equation (9.7).

9.1.3 Scattering Wavefunction and Differential Cross Section

We seek the solution to the relative motion Schrödinger equation

−
~2

2µ
∇2ψ(r) + V(r)ψ(r) = Eψ(r), (9.9)

which corresponds to an incoming beam of particles being scattered by a potential
V(r) located at the origin. Using r = |r|, the solution must satisfy the following
properties

i) There must be a probability of finding a particle moving from left to right along
the z-axis. This is the unscattered wave, whose wavefunction is exp(ikz).

ii) There must be some probability of finding the particle moving away from the
scattering centre at the origin, and to conserve particles, this must be of the
form exp(ikr)/r at large r.

iii) Thus, for large r, ψ(r) must have the form

ψ(r) ∼ eikz + f (θ, φ)
eikr

r
. (9.10)

Clearly the dimensions are wrong, and we have been casual regarding nor-
malization. However, an overall normalization factor does not alter any of
the arguments that follow (ratios matter, but the absolute magnitudes of the
incoming and outgoing waves are immaterial). The dimension of f (θ, φ) is
clearly length.

iv) Note that f (θ, φ) also depends on k, but this argument is often suppressed in
presentations of scattering theory. Note that ~2k2/2µ = E, the total collision
energy, and thus the magnitude of the momentum is unchanged by a collision
with a fixed centre of force.

v) The flux of the incoming particles (represented by the wave exp(ikz)) is given
by multiplying the particle density (in this case one particle per unit volume
since | exp(ikz)|2 = 1) by the velocity, thus:

flux in = number of particles/unit area/unit time (9.11)
= number/unit volume × speed (9.12)
= v/unit area/unit time. (9.13)
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vi) The number scattered per unit time into a solid angle dΩ

= number/unit volume × speed
×area on the sphere which subtends dΩ (9.14)

=
| f (θ, φ)|2

r2 × v × r2 × dΩ = dΩ| f (θ, φ)|2v. (9.15)

vii) Hence

differential cross section =
number/unit time scattered into dΩ

incoming flux × dΩ
, (9.16)

or, using the standard notation, we have

dσ
dΩ

= | f (θ, φ)|2 (9.17)

viii) For central forces f depends only on θ, because the system is completely
symmetric about the z-axis.

9.1.4 Born Approximation

We can treat scattering using time dependent perturbation theory, in which we
take the scattering potential as the perturbation, and the kinetic energy as the free
Hamiltonian. We take wavefunctions normalized in a cubic box of volumeV = L3,
that is

uk(r) =
1
√
V

eik·r. (9.18)

With a requirement of periodic boundary condition on the edges of the box we also
have a discrete spectrum of k values

k =
2π
L

(n1, n2, n3), (9.19)

where the ni are integers.

9.1.5 Application of the Dyson Series

We assume the initial state is |k0〉—in the discussion above, k0 is directed along the
z-axis. The wavefunction at time t arising from this initial condition is then given by

|ψ, t〉I = |k0〉 −
i
~

∫ t

0
dt′ VI(t′)|k0〉. (9.20)
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Thus, the amplitude to find momentum k in the final state is

〈k|ψ, t〉I = δk,k0 −
i
~

∫ t

0
dt′ 〈k|VI(t′)|k0〉

= δk,k0 −
i
~

∫ t

0
dt′ 〈k|eiH0t′/~Ve−iH0t′/~|k0〉,

= δk,k0 −
i
~

∫ t

0
dt′ e−i(ωk0−ωk)t′〈k|V |k0〉, where (9.21)

~ωk =
~2k2

2µ
. (9.22)

We can do the integral to get the probability for scattering P(k,k0, t), with k , k0,
given by

P(k,k0, t) =
4 sin2

(
1
2 (ωk − ωk0 )t

)
~2(ωk − ωk0 )2 |〈k|V |k0〉|

2, (9.23)

→
2π
~2 δ(ωk − ωk0 )|〈k|V |k0〉|

2 × t. (9.24)

9.1.6 Density of Final States

We need to consider the scattering into a range of states residing in the infinitesimal
momentum space volume d3k. From (9.19), the number of states in this range is

dN ≡ dn1dn2dn3 =

( L
2π

)3

d3k =
V

8π3 d3k, (9.25)

=
V

8π3 k2 dk dΩ. (9.26)

Now note the definition (9.22) of ωk, so that

k dk =
µ dωk

~
(9.27)

so that

dN =
Vmk
8π3~

dωk dΩ. (9.28)

The rate of scattering per unit time into any ωk, and into the solid angle element dΩ

is got by integrating with respect to dωk and dividing by t:

dw =
Vµk
4π2~3 |〈k|V |k0〉|

2 dΩ. (9.29)

9.1.7 Scattering Matrix Element as the Fourier transform of the Potential

Notice also, with the definition of the wavefunction (9.18) the matrix element is

〈k|V |k0〉 =
1
V

∫
d3r e−iq·rV(r), (9.30)

where q is the momentum transfer defined by

q ≡ k − k0. (9.31)
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9.1.8 Differential Cross Section

To find the differential cross-section, we divide by the incident flux—one particle in
the volumeV travelling at a speed ~k/µ, i.e., ~k/µV—and by dΩ, to get

dσ
dΩ

=
µ2

4π2~4

∣∣∣∣∣∫ d3r e−iq·rV(r)
∣∣∣∣∣2 . (9.32)

At this point, we have arrived at our desired expression, but the physics contained
within it is not yet clear. The variable q encodes both the amount of momentum
transfer, and the size of the input momentum. We can identify two regimes where
the details of the potential are not so important:

Long wavelength.— Let us assume that |q| is so small that q · r � 1 inside
the range of the potential. Then the exponential factor will be approximately
unity over the region of integration, and the differential cross-section becomes
isotropic. According to (9.17) and (9.10) the outgoing scattered wave is spherically
symmetric.

Short wavelength.— In the opposite regime, where q · r � 1 over the range of
the potential, the potential varies slowly compared with the rapidly oscillating
exponential. We can make a useful change of variables, r = u + v/2, r′ = u − v/2,
and in the short wavelength limit find∣∣∣∣∣∫ d3r e−iq·rV(r)

∣∣∣∣∣2 =

∫
d3r

∫
d3r′V(r)V(r′)eiq·(r−r′)

=

∫
d3u

∫
d3v V(u + v/2)V(u − v/2)eiq·v

→ (2π)3
∫

d3u V(u)2δ(3)(q), (9.33)

where it is clear that the differential cross-section has a sharp peak at k = k0.

9.2 Born Approximation for Spherically Symmetric Potentials

If the potential has the spherically symmetric form V(r), then, defining q = |k − k0|,
the Fourier transformed potential, in (9.32), becomes (in spherical polar co-ordinates
r, α, β)∫

d3r e−iq·rV(r) =

∫
r2 sinα dr dα dβ e−iqr cosαV(r),

=
4π
q

∫ ∞

0
V(r)r sin qr dr, (9.34)

and the cross section becomes

dσ
dΩ

=
4µ2

~4q2

∣∣∣∣∣∫ ∞

0
V(r)r sin qr dr

∣∣∣∣∣2 . (9.35)

Notice that, for spherically symmetric potentials:

i) The cross section depends only on q = |k − k0|.

87



9. Scattering Theory

0

15 °

345 °

Figure 9.1: Polar plot of the differential cross section (rescaled) for scattering from the
potential (9.37). The curves correspond to (from the most circular to the most sharply peaked)
to ka = 0.2, 8, 30.

ii) The energy conservation enforced by (9.24) requires |k0| = |k| ≡ k. Defining
the scattering angle θ to be the angle between k0 and k, we have

q =
√

2k2(1 − cos θ) = 2k sin
θ

2
. (9.36)

9.2.1 Spherical Step

We take

V(r) =

{
0, r > a,

U0, r < a. (9.37)

For this potential∫ ∞

0
V(r)r sin qr dr = U0

∫ a

0
r sin qr dr =

U0

q2 (sin qa − qa cos qa). (9.38)

Substituting this in the formula (9.35) for the cross section yields

dσ
dΩ

=

(
2µU0a3

~2

)2 (
sin qa − qa cos qa

(qa)3

)2

, (9.39)

giving the qualitative result shown in (9.1). For small values of qa the cross section
is almost isotropic, while for large qa there is a very strong forward peaking. This is
a general feature of all scattering potentials. From the formula (9.32), it can be seen
that there will be little contribution to the integral if q · r � 1 inside the range of the
potential. When q = 0, the cross section must also be independent of angle for a
spherically symmetric potential since the angular dependence of the cross section
only arises from the dependence of q on angle. This limit is of course the limit of
long wavelength.

9.2.2 Rutherford Scattering

We consider first scattering from a screened Coulomb potential

V(r) →
βe−λr

r
, (9.40)
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in which case∫ ∞

0
V(r)r sin qr dr = β

∫ ∞

0
e−λr sin qr dr = −

βq
q2 + λ2 . (9.41)

The value of the screening constant is quite small—in practice something like it
arises from the electrons in an atom, which screen the highly localized charge of
the nucleus. For sufficiently large q, we can set λ→ 0, and then get the Rutherford
scattering cross section

dσ
dΩ

=
µ2β2

4(~k)4 sin4 (θ/2)
. (9.42)

Figure 9.2: Ernest Rutherford
(1871-1937) proposed that the atomic
nucleus was a dense charge concentra-
tion, confirmed in experiments involv-
ing scattering of alpha particles from
gold atoms in 1911.

Since ~k is the momentum of the incoming particles, this formula does not explicitly
contain Planck’s constant, and is exactly the same as was derived classically by
Rutherford. Even though it is derived using the Born approximation, it is in fact
exact. However, the amplitude derived this way differs by a non-trivial phase from
the exact result, which can be computed exactly by other means not covered in this
course.

9.2.3 Validity of the Born Approximation

The Born approximation is perturbative, since it omits the higher terms in the Dyson
series. The simplest estimate can be made by saying that the term calculated must
be “small”. This will happen for weak potentials, and when q is large, since then
the exponential oscillates rapidly, and the integral will be small.

Exercise 9.1: Periodic Potentials—the Bragg Formula

Suppose that the scattering potential is periodic;

V(r) = V(r + a). (9.43)

Show that scattering only occurs if q · a = 2nπ. Show that this is Bragg scattering. Describe the nature
of the scattering when there are three periods, a, b, c as would be the case for any crystal.

Exercise 9.2: Higher Order Born Approximation

The second order Born approximation would be obtained by using the Dyson series to second order.
Show how to implement the second order.

9.3 The Method of Partial Waves

In this section we implement the description of scattering from the point of view
of the Schrödinger equation, utilizing fully the wave nature of the problem, and
especially the description in terms of angular momentum. In this treatment we
are able to go beyond the Born approximation and solve the two-body scattering
problem exactly.
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9.3.1 Eigenfunctions

Because the force is central, H commutes with L, and we can find simultaneous
eigenstates ψE,l,m(r), which can be written in terms of spherical harmonics as

ψE,l,m(r) = Lk,l(r)Y l
m(θ, φ), (9.44)

and the radial function satisfies the differential equation

1
r2

d
dr

(
r2 dLk,l

dr

)
+

{
k2 − U(r) −

l(l + 1)
r2

}
Lk,l = 0, (9.45)

where U(r) ≡
2µ
~2 V(r), E =

~2k2

2µ
. (9.46)

9.3.2 The Free Particle

In this case U(r) = 0, and the equation reduces to a special case of Bessel’s equation,
the solutions of which are called spherical Bessel functions

jl(kr) =

√
π

2kr
J

l+ 1
2

(kr), (9.47)

nl(kr) =

√
π

2kr
N

l+ 1
2

(kr). (9.48)

These have the properties

1. jl(kr) is regular at the origin, while nl(kr) is singular at the origin, and in fact
for small l we can give explicit formulae

j0(z) =
sin z

z
, n0(z) = −

cos z
z

, (9.49)

j1(z) =
sin z
z2 −

cos z
z

, n1(z) = −
cos z

z2 −
sin z

z
, (9.50)

j2(z) =

(
3
z3 −

1
z

)
sin z −

3
z2 cos z, n2(z) = −

(
3
z3 −

1
z

)
cos z −

3
z2 sin z.

(9.51)

2. For small z we have the expansion

jl(z) ≈
zl

1 · 3 · 5 . . . (2l + 1)
, nl(z) ≈

1 · 3 · 5 . . . (2l − 1)
zl+1 . (9.52)

3. For large z the solutions approach the asymptotic forms

jl(z) ∼
sin(z − lπ/2)

z
, nl(z) ∼ −

cos(z − lπ/2)
z

. (9.53)

Thus, for a free particle, a general solution to the Schrödinger equation can be
written

ψ(r) =
∑
l,m

al,m jl(kr)Y l
m(θ, φ). (9.54)

Only the jl functions occur, since the wavefunction must be finite at the origin.
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For an interaction potential with axial symmetry [V(r) ≡ V(r, θ)], only m = 0
can occur, and we can use the relationship between the spherical harmonics and the
Legendre polynomials

Y l
0(θ, φ) =

√
2l + 1

4π
Pl(cos θ), (9.55)

and we can write an expansion of the form

ψ(r) =
∑

l

Al jl(kr)Pl(cos θ). (9.56)

A particular case is known as the Rayleigh plane wave expansion

eikz =
∑

l

(2l + 1)il jl(kr)Pl(cos θ). (9.57)

This expansion is fundamental in scattering theory of almost every kind.

9.3.3 Scattering for a Potential with Finite Range

If U(r) = 0 for r > a then outside this range the wavefunction will again be a
solution of the equation with U(r) = 0, hence outside this range (assuming axial
symmetry)

ψ(r) =
∑

l

ψl(r)Pl(cos θ), (9.58)

and the general solution for the radial wavefunction is a linear combination of the
two possible solutions

ψl(r) = Al {cos(δl) jl(kr) − sin(δl)nl(kr)} , (9.59)

where our choice of coefficients serves to define the phase shifts δl. Using the
long-range approximation for the spherical Bessel functions (9.53) we find the
asymptotic form

ψl(r) ∼
Al

kr
sin(kr − lπ/2 + δl). (9.60)

Thus, for large r,

ψ(r) ∼
∑

l

Al

kr
sin(kr − lπ/2 + δl)Pl(cos θ). (9.61)

But we know that for large r

ψ(r) ∼ eikz + f (θ)
eikr

r
, (9.62)

∼
∑

l

(2l + 1)ilPl(cos θ)
sin(kr − lπ/2)

kr
+ f (θ)

eikr

r
. (9.63)
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We now compare (9.60) with (9.63). By writing the sin functions in terms of complex
exponentials, we can equate coefficients of e−ikrPl(cos θ) to get

Al = (2l + 1)ileiδl . (9.64)

Now equate coefficients of eikr, to get

f (θ) =
1

2ik

∑
l

{
Aleiδl (−i)l − (2l + 1)

}
Pl(cos θ). (9.65)

Collecting terms together we find an expression for f (θ) in terms of the phase shifts
for each partial wave, δl, as

f (θ) =
1

2ik

∑
l

(2l + 1)
(
e2iδl − 1

)
Pl(cos θ) (9.66)

It can be shown that the above analysis requires only that

lim
r→∞

rU(r) = 0 (9.67)

and this condition provides a more general definition of a finite range potential. For
the special case of the Coulomb potential, U(r) = a/r, and the condition (9.67) is
not satisfied. Coulomb scattering requires a separate analysis, and will not be dealt
with in this course.

Exercise 9.3: Asymptotic form a partial wave

Show that (9.59) and (9.53) lead to the expression (9.61).

Exercise 9.4: Equivalent partial wave coefficient

For analysis of (9.66) in the low k limit, prove the useful identity

ei2δl − 1
2i

=
tan δl

1 − i tan δl
. (9.68)

9.3.4 Total Cross Section

The total cross section is given by

σ =

∫
dΩ| f (θ)|2 (9.69)

=
1

4k2

∑
l,l′

(2l + 1)(2l′ + 1)(e−2iδl − 1)(e2iδl′ − 1)

×

∫ π

0
2π sin θ dθ Pl(cos θ)Pl′ (cos θ). (9.70)

We now use the orthogonality of the Legendre polynomials∫ π

0
sin θ dθ Pl(cos θ)Pl′ (cos θ) =

2δll′

2l + 1
, (9.71)
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giving

σ =
4π
k2

∑
l

(2l + 1) sin2 δl ≡
∑

l

σl (9.72)

The quantity σl is known as the l-wave cross section. From this equation, it can
be seen that as far as total cross sections are concerned, each partial wave scatters
independently. Of course this is not true in terms of differential cross sections.

9.4 Interpretation of the Phase Shifts

The lth radial wavefunction is usually written in terms of

ul(r) ≡ kr ψl(r) ∼ Al sin(kr − lπ/2 + δl). (9.73)

The phase shift δl is a measure of how far the asymptotic sinusoidal wavefunc-
tion is displaced at the origin from the corresponding free asymptotic sinusoidal
wavefunction.

9.4.1 Only a finite number of δl are significantly different from zero

Classically this follows from an impact parameter interpretation. If the particle has
angular momentum l, the wavefunction is only significantly different from zero
when ~kr ≈ l~, since l~ is the approximate classical value of the angular momentum.
This means that if a is the range of the potential, and if l � ka, this partial wave
will not be altered, and its phase shift will be zero. Essentially, if l is very large,
the centrifugal term l(l + 1)/r2 is very much larger than U(r), and the interaction is
dominated by the centrifugal term.

9.4.2 The Optical Theorem

If we calculate Im f (0), and use Pl(cos 0) = 1,

Im f (0) =
1
2k

∑
l

(2l + 1)(1 − cos 2δl) =
1
k

∑
l

(2l + 1) sin2 δl (9.74)

=
kσ
4π
. (9.75)

The imaginary part of the forward amplitude can be looked on as an “absorption”.
It measures that proportion of the particles which does not remain in the forward
beam. Since particles are conserved, this must be equal to the number scattered,
which is measured by the total cross section.

9.4.3 Measurement of Phase Shifts

In practice one can measure the differential cross section, and hence | f (θ)|2, quite
accurately at a number of energies. The phase shifts δl are of course energy depen-
dent, and therefore must be determined at every scattering energy, and can only be
determined by a fitting procedure, which is considerably assisted by the fact that
only a few phase shifts are normally nonzero.
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Exercise 9.5: Hard Sphere Potential

The hard sphere potential is defined by

U(r) =

{
∞, r < a
0, r > a. (9.76)

Using the boundary condition that the wavefunction should vanish at r = a, find the phase shifts for all l.

9.5 Cold collision regime: S -wave scattering

9.5.1 Scattering length and effective range

In very low energy scattering only the S -wave will contribute. Inspection of (9.10)
shows that if there is scattering in the limit k → 0, the asymptotic form of the
wavefunction for large r must take the form

ψ ≡ 1 −
as

r
, (9.77)

for some constant as (not necessarily positive), and as then gives the intercept of
the asymptotic wavefunction (9.77) with the r axis. On the other hand, in the small
k limit the intercept of the far-field wavefunction can be found from (9.59) in terms
of the phase shift as

tan δ0 = −kas. (9.78)

Using this expression, and (9.66) we then have

lim
k→0

e2iδ0 − 1
2ik

= lim
k→0

−as

1 + iask
= −as. (9.79)

The parameter as is called the scattering length.
The differential cross section is obviously given by

dσ
dΩ

∣∣∣∣∣
k→0

= as
2. (9.80)

A parametrization to higher order is made using a parameter r0, the effective range,
and for various reasons it is made in the form

k cot δ0 ≈ −
1
as

+ 1
2 r0k2 + . . . , (9.81)

where the higher order terms are higher powers of k2. Except for pathological
potentials, it can be shown that k cot δ0 has a power series in E, which is equivalent
to a power series in k2.

Exercise 9.6: S-wave limit of f (θ)

Using tan δ0 = −kas, prove (9.79).
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9.5.2 S-wave cross section and exchange symmetry

It is clear from (9.80) that the total scattering cross section is

σ =

∫
dΩ

dσ
dΩ

= 4πa2
s , (9.82)

so that the collision is essentially that of hard sphere target of radius as.
Thus far in this chapter we have not considered the symmetrization of the wave-

function with respect to particle exchange, and have assumed that the particles
are distinguishable. For Bosons (Fermions) the wavefunction must be symmetric
(antisymmetric) under interchange of the particle coordinates. The exchange oper-
ation amounts to changing the sign of the relative coordinate, namely r → −r, or
r → r, θ → π− θ, φ→ π+φ for our cylindrical coordinates describing the scattering
process. For the cylindrically symmetric potentials that we usually encounter, the
exchange symmerized wavefunctions corresponding to (9.10) are

ψ = eikz ± e−ikz + [ f (θ) ± f (π − θ)]
eikr

r
(9.83)

and the amplitude for scattering in the direction specified by θ is f (θ) ± f (π − θ),
giving the differential cross section

dσ
dΩ

= | f (θ) ± f (π − θ)|2. (9.84)

To find the total cross section we integrate this expression over all distinct final
states. Hence, we must be careful to only integrate over the range 0 ≤ θ ≤ π/2 and
0 ≤ φ ≤ 2π, since the range π/2 ≤ θ ≤ π gives identical scattered states due to the
symmetry. Thus, if the scattering is purely S -wave, the total cross section is

σ = 8πa2
s (9.85)

for identical Bosons, and σ vanishes for identical Fermions.

9.5.3 Effective potential for identical Bosons

We now return to the two body-problem that formed our starting point, Eq. (9.1). In
general the two-body interaction potentials are unknown and must be characterised
on a case by case basis for each distinct pair of atoms involved in a pair-wise
collision. However, for identical Bosons, a drastic simplification of the theory is
now available.

We can look for an effective potential, Veff(r), to replace the physical two-body
interaction. We only require that it must give the same f (θ), and σ as the physical
two-body potential, in the S-wave limit. It is straightforward to verify that this is
achieved via the effective potential

Veff(r) = gδ(3)(r) ≡
4π~2as

m
δ(3)(r). (9.86)
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9. Scattering Theory

The atomic collision can be thought of as occurring between atoms with a two-body
potential for point-like particles, with a strength characterised by the scattering
length. This is sometimes called a contact interaction.

Exercise 9.7: Point-like scattering of Bosons

Verify that the value of g given in (9.86) gives the correct values for dσ/dΩ for S -wave scattering,
and hence is the correct two-body effective potential for the two-particle Schrödinger equation.

9.6 The Spherical Step

The scattering length depends on the details of the interatomic potential. Consider
the spherical step potential (9.37):

V(r) =

{
0, r > a,

U0, r < a. (9.87)

The radial wavefunction for any l can be written

Lk,l(r) =
uk,l(r)

r
, (9.88)

where ukl(r) satisfies the radial Schrödinger equation

d2ukl

dr2 +

{
k2 − U(r) −

l(l + 1)
r2

}
ukl = 0. (9.89)

We consider the case of l = 0, and

2µU0

~2 = −β2 < 0, (9.90)

so that the wavefunction has the form (omitting the subscripts k and 0 for brevity)

u(r) =

{
A sin(kr + δ), r > a,
B sin qr, r < a. (9.91)

where q2 = β2 + k2. The boundary conditions at r = a lead to two equations from
which A and B can be eliminated to give

k cot(ka + δ) = q cot qa. (9.92)

This equation can be solved for k cot δ, giving

k cot δ =
q cot qa + k tan ka

1 − (q/k) cot qa tan ka
. (9.93)

The solution is not straightforward to interpret, but can be used to get the scattering
length and effective range.

96
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9.6.1 Relation to Bound States

We consider a situation in which there is one bound state with very small binding
energy. The solutions of the Schrödinger equation for k very close to zero look very
similar to the bound state solution, except at large distances.

When k is very small, we can write (setting A = 1 for convenience)

u(r) ≈ kr cos δ + sin δ (9.94)

so the the wavefunction crosses the axis at the point

r = −
1

k cot δ
= as. (9.95)

That is, the scattering length represents the place where the k = 0 wavefunction
crosses the axis.

If the binding energy of the bound state is Eb = ~2α2/2µ, the logarithmic
derivative u′(a)/u(a) for the bound state is −α. If the binding energy and hence αa
is very small, as the energy changes to zero, the internal wavefunction changes very
little, and the logarithmic derivative for k = 0 is k cot δk=0 = −1/as.

Thus we can deduce that the scattering length in the case that there is a bound
state with very small binding energy is given by

as ≈
1
α

=
~√

2µEb
(9.96)

Exercise 9.8: Effective range

Show the effective range in this case is r0 ≈ a.

9.7 Green’s Function and the Lippman-Schwinger Equation

9.7.1 The Green’s Function

The Green’s function G(r, r′) for the free Schrödinger equation is a function which
satisfies the equation(
∇2 + k2

)
G(r, r′) = δ(r − r′). (9.97)

There are two solutions to this equation—the one of most interest corresponds to
outgoing waves, and is

Go(r, r′) = −
eik|r−r′ |

4π|r − r′|
. (9.98)

There is another solution, corresponding to incoming waves,

Gi(r, r′) = −
e−ik|r−r′ |

4π|r − r′|
. (9.99)

The easiest way to show these are solutions is to use the relationship

∇2 1
|r|

= −4πδ(r). (9.100)
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Next convert to polar coordinates, and use

∇2 eikr − 1
r

=
1
r2

d
dr

r2 d
dr

(
eikr − 1

r

)
, (9.101)

= −k2 eikr

r
. (9.102)

The last equality follows by expanding in power series and differentiating term by
term. From (9.100) and (9.101)(
∇2 + k2

) eikr

r
= ∇2 eikr − 1

r
+ ∇2 1

r
+ k2 eikr

r
= −4πδ(r). (9.103)

9.7.2 Use of the Green’s Function in Scattering

We will consider the Schrödinger equation in the form(
∇2 + k2

)
ψk(r) = U(r)ψk(r). (9.104)

Using the Green’s function, the solution can be written

ψk(r) = eik·r −
1

4π

∫
d3r′

eik|r−r′ |

|r − r′|
U(r′)ψk(r′). (9.105)

(Conventionally k = (0, 0, k).) This is a form of the integral equation of scattering
theory known as the Lippman-Schwinger equation.
a) Asymptotic Analysis: If the potential vanishes outside a certain range R, then
the asymptotic wavefunction at large distances is computed for |r′| < R, and |r| � R.
Thus at long distances we can approximate

|r − r′| ≈
√

x2 − 2xx′ cos θ (9.106)
= x − x′ cos θ. (9.107)

We may neglect the second term in the denominator of (9.105), but it must be
included in the exponent, giving the result

ψk(r) ∼ ψs
k(r) = eik·r −

eik|r|

4π|r|

∫
d3r′ U(r′)e−ik′·r′ψk(r′). (9.108)

In this equation k′ is a vector with magnitude k, and parallel to r, that is, in the
direction of the scattered particle.
b) Scattering Amplitude: The asymptotic form of the wavefunction shows that the
scattering amplitude is given by

f (θ, φ) = −
1

4π

∫
d3r′ U(r′)e−ik′·r′ψk(r′). (9.109)

Thus, in principle, to get the scattering amplitude on should solve the Lippman-
Schwinger equation (9.105) to get ψk(r), and then use (9.109).
c) The Born Approximation: The approximation that the scattering is weak enables
us to make the replacement

ψk(r′) → eik·r′ (9.110)
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yields the Born Approximation in the form

f (θ, φ) = −
1

4π

∫
d3r′ U(r′)ei(k−k′)·r′ . (9.111)

Exercise 9.9: Higher Order Born Approximations

How would you write down higher order approximations to the scattering amplitude based on the
use of (9.105) and (9.108)?

9.7.3 The T -Matrix

The T -matrix or transition matrix is defined in terms of the scattering amplitude as

Tk′,k = −
2π~2

µ
f (θ, φ) (9.112)

=
~2

2µ

∫
d3r′ U(r′)e−ik′·r′ψk(r′) =

∫
d3r′ V(r′)e−ik′·r′ψk(r′). (9.113)

Exercise 9.10: Equivalence of Descriptions

Use this definition to express ψk(r) in terms of Tk′ ,k, and that therefore everything about the
scattering problem is contained in the T -matrix.

9.7.4 Lippman-Schwinger Equation for the T -Matrix

It is not very difficult to derive the Lippman-Schwinger equation for the T -matrix
from that for the wavefunction. It takes the form

Tk′,k = Vk′,k +
2µ

(2π)3~2

∫
d3q

Vk′,qTq,k

k2 − q2 + iε
, (9.114)

Vk′,k ≡

∫
d3r V(r)ei(k−k′)·r. (9.115)

The iε is very common in scattering theory—the integral is evaluated in the limit of
ε → 0 from the positive side.
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10 Degenerate Bose Gases

In 1925 the statistical approach proposed for photons by Bose was generalised to
massive particles by Einstein. The central result Einstein demonstrated was the
existence of a phase transition when the temperature becomes so low that occupation
of the system ground state becomes macroscopic.

Despite great efforts in cryogenic helium systems, this state of matter was not
achieved until 1995 when a team led by Eric Cornell and Carl Wiemann finally
realised a quantum degenerate Bose gas in a magnetic trap, and were able to verify its
existence [4]. The discovery, rapidly followed by the first realisation of a quantum-
degenerate Fermi gas [5] ushered in a modern era of highly controllable, degenerate,
ultra-cold matter-waves.
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Figure 10.1: In 1925 Einstein pre-
dicted that a new phase of quantum
degenerate matter would form in a sys-
tem of Bose particles at low enough
temperatures. His argument hinged
on the de Broglie wavelength of each
boson becoming of order the system
size.

10.1 Ideal Gas Phase Transition

A fundamental property of the BEC transition is that is driven by quantum statistics
and thus does not require an explicit interaction between Bosons to realise it. In
practice, interactions provide the thermalisation mechanism required for the system
to reach equilibrium, and are hence an essential aspect of any physical realisation.

The phenomenon rests upon a high occupation of a specific quantum state, that,
at thermal equilibrium, is necessarily the ground state of the system. We will give
an account of the phenomenon applicable to realistic trapped systems created in
laboratories such as at Otago.

10.1.1 Grand canonical free energy

In the general, the grand canonical potential for any system can be written as

F = −kBT ln Z, (10.1)

where Z is the grand-canonical partition function. For a system of Bosons distributed
over a set of states with energies εi, this can be written as

F = kBT
∑

i

ln
(
1 − eβ(µ−εi)

)
, (10.2)

where β = 1/kBT . At sufficiently low temperatures, the chemical potential µ ap-
proaches the ground state energy ε0 from below, leading to a macroscopic occupation
N0. Provided the potential confining the atoms is sufficiently smooth, we can use
a semi-classical approximation for the excited states, provided we single out the
ground state for special treatment — this is necessary if we are to properly account
for the situation N0 � 1. Using the semiclassical approximation for the excited
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10. Degenerate Bose Gases

states, we can make the replacements∑
i

→

∫ ∫
d3rd3p
(2π~)3 , (10.3)

εi → ε(r,p) =
p2

2m
+ V(r), (10.4)

and integrate over the particle momentum to find

F = N0(ε0 − µ) −
1

βλ3
dB

∞∑
k=1

ekβµ

k5/2 Gβ(k), (10.5)

where

Gβ(k) =

∫
d3r e−kβV(r), (10.6)

accounts for the trapping geometry, and

λdB =

√
2π~2

mkBT
(10.7)

is the thermal de Broglie wavelength. All thermodynamic properties of the trapped
system are determined by Gβ(k) and its derivatives; we can recover the theory of the
homogeneous gas by taking V(r)→ 0 and limiting the spatial integration to a finite
volumeV.

The BEC transition occurs when the chemical potential reaches the ground state
energy, and can be written in terms of the thermodynamic relation for the total atom
number

N = −
∂F
∂µ

∣∣∣∣∣∣
µ=ε0

. (10.8)

The next step is a little subtle. We assume that, precisely at the transition point,
N0 ≡ 0. This is a paradoxical statement, clarified when we realise that by insisting
that the condensate is empty at the transition point, we are really imposing the
condition that it is not macroscopic when compared with the population of excited
states, i.e. N0 � Nex. In practice N0 is necessarily finite, and indeed, larger than the
population of any other mode.

At the transition temperature, defined as T = Tc, we then have N ≡ Nex, often
referred to as the saturation of excited states precisely because the excited states of
the system are unable to hold any more Bosons. At this point

Nλ3
dB =

∞∑
k=1

1
k3/2 Gβ(k), (10.9)

where the trap minimum is taken as ε0 = V0 = 0. For a 3-dimensional harmonic trap

V(r) =

3∑
i=1

1
2 mω2

i x2
i , (10.10)
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and we have the simple result

Gβ(k) =

(
2π

βmω̄2k

)3/2

, (10.11)

where ω̄3 ≡ ωxωyωz defines the geometric mean trapping frequency. Using this
result, we arrive at

kBTc =
~ω̄N1/3

ζ(3)1/3 . (10.12)

where

ζ(s) =

∞∑
k=1

1
ks (10.13)

is the Riemann zeta function, and the numerical factor in (10.12) is close to unity:
ζ(3)−1/3 ' 0.94. Note an interesting feature of (10.12), namely that the thermal de
Broglie wavelength does not appear (in contrast to the homogeneous system). Using
(10.12) in the total atom number relation (10.8), for µ ≥ ε0, we have the condensate
fraction for the trapped ideal gas

N0

N
= 1 −

(
T
Tc

)3

. (10.14)

Exercise 10.1: Homogeneous Bose gas

Use (10.9) to find the equivalent of (10.12) and (10.14) for an ideal Bose gas confined to volume
V. Express your result in terms of the particle density n = N/V, and λdB. Comment on the role of
confinement.

Exercise 10.2: Trapped gas transition

1. Calculate the ideal gas Tc for N = 106 atoms of 87Rb held in a harmonic trap with (ωx, ωy, ωz) =

2π(10, 50, 100)s−1.

2. Assuming a the same harmonic trap, estimate the number of atoms in the BEC of Figure 10.2.

3. Calculate the condensate fraction at T = 90nK.

10.2 Bose-Einstein Condensates in Trapped Alkali Gases

The mathematics is pretty, but is there any truth to it?
Albert Einstein

The achievement of BEC in a dilute gas of 87Rb in 1995 was an experimental
tour-de force. The essential elements required are
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1. Atoms as composite Bosons: Provided the energies required to probe internal
structure are not available, a composite of an even number of Fermions will
obey Bose statistics.

2. Dilute gas: When cooling a gas, many-body collisions cause droplet forma-
tion, and a gas-liquid transition. This must be avoided by keeping the gas
extremely dilute.

3. Optical molasses: Careful manipulation with off-resonant laser beams gen-
erates optical forces that are both directionally and velocity selective, acting
to slow the atoms down in specific directions. The cooling achieved via this
process has a limitation due to spontaneous emission, and the laser cooling
typically produces ∼ 1011 atoms at temperatures of order ∼ µK.

4. Evaporative cooling: The final phase involves energy-selective removal of
atoms, allowing the slower atoms to continuously rethermalize until conden-
sation is achieved at temperatures of order ∼ 100nK. Most of the gas is lost
during this stage, leaving of order 103 − 108 atoms in the dilute gas BEC.

Figure 10.2: Formation of the first
Bose-Einstein condensate in a dilute
gas of 87Rb atoms, at a transition tem-
perature Tc ∼ 200nK. The exotic
phase of matter was achieved for the
first time in 1995 by the group led by
Eric Cornell and Carl Wieman at the
Joint Institute for Laboratory Astro-
physics (JILA), Boulder, Colorado.

10.2.1 Binary collision Hamiltonian

In the second-quantized theory, a system of identical bosons is described by the field
operator, ψ̂(r), that obeys Bose commutation relations

[ψ̂(r), ψ̂†(r′)] = δ(r − r′). (10.15)

The Hamiltonian can then be written as

H =H0 + HI

=

∫
d3r ψ̂†(r)

(
−
~2∇2

2m
+ V(r, t)

)
ψ̂(r)

+
1
2

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂†(r′)U(r − r′)ψ̂(r′)ψ̂(r), (10.16)

where U(r − r′) is the two-body interaction potential, and V(r, t) describes the
external confining potential. In the cold-collision regime, the dominant interactions
occur pair-wise and for identical Bosons the scattering becomes entirely S -wave.
We can thus use the point-like scattering description, and replace the true two-body
potential with the effective potential (9.86), making the replacement

U(r − r′)→ gδ(r − r′) ≡
4π~2a

m
δ(r − r′), (10.17)

for mass m and s-wave scattering length a, giving

HI =
g
2

∫
d3r ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r). (10.18)

The Heisenberg equation of motion for the field operator is

i~
∂ψ̂(r)
∂t

=

(
−
~2∇2

2m
+ V(r, t) + gψ̂†(r)ψ̂(r)

)
ψ̂(r). (10.19)

In general this equation of motion is insoluble, due to the vastness of the Hilbert
space it describes.
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10.2.2 Gross-Pitaevskii equation

It is reasonable to suppose that for a highly occupied Bose field, the field operator
may approach a classical state. At temperatures T � Tc, the atoms condense into a
many-body ground state of the interacting system. For a pure BEC with every atom
is in the common state, φ0(r, t) the many-body wavefunction factorizes:

φ(r1, . . . , rN , t) = φ0(r1, t) . . . φ0(rN , t). (10.20)

The total energy of the Hamiltonian (4.7) is then

〈φ|Ĥ|φ〉 = N
∫

d3r φ∗0(r)
[
−
~2∇2

2m
+ V(r)

]
φ0(r)

+
N(N − 1)

2

∫
d3r

∫
d3r′ U(r − r′)|φ0(r)|2|φ0(r′)|2. (10.21)

Introducing the form φ(r) =
√

Nφ0(r), normalised to N =
∫

d3r |φ(r)|2, and using
N ' N − 1 for large N, and (10.17), we arrive at the Gross-Pitaevskii energy for the
condensate wavefunction

E(N) =

∫
d3r φ∗(r)

[
−
~2∇2

2m
+ V(r)

]
φ(r) +

g
2

∫
d3r |φ(r)|4, (10.22)

and the equation of motion is, in the Hamiltonian formalism

i~
∂φ(r, t)
∂t

≡
δE(N)
δφ∗(r, t)

. (10.23)

This is the classical Hamiltonian mechanics equivalent of calculating the commutator
to derive (10.19) from (10.16).

We thus arrive at the Gross-Pitaevskii equation for the condensate wavefunction

i~
∂φ(r, t)
∂t

=

(
−
~2∇2

2m
+ V(r, t) + g|φ(r, t)|2

)
φ(r, t). (10.24)

This equation of motion gives a remarkably accurate description of dilute gas
BEC’s for temperatures T � Tc. The equation describes a large range of collective
phenomena in degenerate Bose gases. Interestingly, this equation would also have
been obtained via the heuristic replacement ψ̂→ φ in the Heisenberg equation of
motion (10.19), corresponding to recovering the classical field limit of the many
body quantum field theory.

10.2.3 Chemical potential

When the system of Bosons is in equilibrium, it has an associated chemical potential
µ, and the time evolution is a trivial exponential factor

φ(r, t) ≡ φ(r)e−iµt/~, (10.25)

giving the time-independent GPE

µφ(r) =

(
−
~2∇2

2m
+ V(r) + g|φ(r)|2

)
φ(r), (10.26)
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the solution of which describes the ground state of the system. Suppose now that
we have a solution of the stationary GPE, for which we set N → N + 1, leading to
φ→ φ + δφ. Then

δE(N) =

∫
d3r

(
δφ∗

[
−
~2∇2φ

2m
+ Vφ + g|φ|2φ

]
+

[
−
~2∇2φ∗

2m
+ Vφ∗ + g|φ|2φ∗

]
δφ

)
,

(10.27)

and since φ satisfies (10.26), we find

δE(N) =

∫
d3r (δφ∗µφ + φ∗µδφ) = µδ

∫
d3r |φ(r)|2 = µδN. (10.28)

Hence µ is the energy associated with adding a particle to the interacting system

µ(N) =
∂E(N)
∂N

. (10.29)

10.2.4 Thomas-Fermi regime

When the system is well described by (10.26), i.e. near T = 0, at any points in
space where the interaction and potential terms dominate the energy, it is a very
good approximation to neglect the kinetic energy term. In practice this is usually a
consistent approximation when V(r) � µ, and in equilibrium this corresponds to
avoiding the boundary of the BEC.

Making this Thomas-Fermi approximation in (10.26), we have

|φ(r)|2 =
1
g

max
[
µ − V(r), 0

]
. (10.30)

For a 3D harmonic trap given by (10.10), we can write this as the parabolic density
profile

|φ(r)|2 =
µ

g
max

1 − x2
i

R2
i

, 0
 , (10.31)

where Ri =

√
2µ/mω2

i are the Thomas-Fermi radii. This approximation breaks
down near the BEC edge, where the density is low and the kinetic energy term is
required to give a complete description. However, over the bulk of the condensate,
the TF-approximation gives quite an accurate description of the interacting BEC. In
particular, we may find an explicit form for the chemical potential of N atoms by
calculating the norm of the TF-wavefunction:

N =

∫
d3r |φ0(r)|2 =

µ

g

∫ Rx

−Rx

dx
∫ √1−x2/R2

x

−
√

1−x2/R2
x

dy

×

∫ √1−x2/R2
x−y2/R2

y

−
√

1−x2/R2
x−y2/R2

y

dz
1 − x2

R2
x
−

y2

R2
y
−

z2

R2
z

 . (10.32)
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Changing variables to (x, y, z) = (uRx, vRy, vRz) makes the integral spherically
symmetric so that we can write r2 = u2 + v2 + w2, and

N =
µ

gω̄3

(
2µ
m

)3/2

4π
∫ 1

0
dr r2(1 − r2) =

µ

gω̄3

(
2µ
m

)3/2 8π
15
. (10.33)

In terms of the geometric mean oscillator length ā =
√
~/mω̄, we find

µ(N) =
~ω̄

2

(
15Na

ā

)2/5

, (10.34)

that, together with (10.31) gives a complete Thomas-Fermi description of the BEC
ground state.

Exercise 10.3: Chemical potential

Verify (10.34).

Exercise 10.4: Thomas-Fermi parameters

Calculate the peak density and the Thomas-Fermi radii for a system of N = 105 atoms of 87Rb in a
trap with (ωx, ωy, ωz) = 2π(10, 50, 100)s−1. The scattering length of 87Rb may be taken to be a ' 95a0,
where a0 = 5.29 × 10−11m is the Bohr radius.

Exercise 10.5: Thomas-Fermi energy

Use (10.29) to show that in the Thomas-Fermi approximation

E(N) =

∫ N

0
µ(N)dN =

5Nµ(N)
7

(10.35)

10.2.5 Quantum vortices

In 1947 Onsager noticed that if a superfluid (the only such fluid available was Helium
at 4K) is described by a common wavefunction, the phase of the wavefunction has
profound implications for the kinds of excitations supported by the fluid. The
superfluid wavefunction φ(r, t) can be decomposed in terms of the density ρ(r, t) =

|φ(r, t)|2, and the phase Θ(r, t), as

φ(r, t) =
√
ρ(r, t)eiΘ(r,t), (10.36)

known as the Madelung transformation. For any wavefunction, the phase must be
continuous and single valued wherever the density is non-zero. Note that, since the
interaction term in (10.24) takes the form of a potential, the GPE obeys the same
continuity equation as the ordinary Schrödinger equation:

∂ρ(r, t)
∂t

+ ∇ · j(r, t) = 0, (10.37)
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where the current is

j(r, t) =
i~
2m

(
[∇φ∗]φ − φ∗∇φ

)
(10.38)

= ρ(r, t)v(r, t), (10.39)

and in the last line we use the decomposition (10.36), and identify the superfluid
velocity

v(r, t) ≡
~

m
∇Θ(r, t). (10.40)

An immediate consequence of this expression is that vorticity must be quantized.
Let us compute the superfluid circulation around any planar region A of space with
boundary ∂A containing a superfluid described by φ0(r, t):

Γ ≡

∮
∂A

v · dl =
~

m

∮
∂A
∇Θ(r, t) · dl = n

h
m
, (10.41)

where n = 0,±1,±2, . . . , as required by the single-valued phase condition.

Figure 10.3: False colour map of the
particle density of a Bose-Einstein
condensate containing a rapidly ro-
tating Abrikosov vortex lattice states
created in the Cornell lab at JILA.
The system was spun up by evapo-
ratively cooling a rotating thermal gas
across the transition temperature, with
enhanced evaporation of non-rotating
atoms, thus increasing the angular mo-
mentum per particle of the remaining
atoms. The Abrikosov lattice under-
goes uniform rigid body rotation.

Note
that since (10.40) shows that the velocity is the gradient of a potential, it must also
be curl-free, ∇ × v ≡ 0, wherever the phase Θ is well defined. We can use this fact
to deduce the form of the vorticity defined as

ω(r, t) = ∇ × v(r, t). (10.42)

From (10.41), (10.40), it is clear that

~

m

"
A
(∇ × Θ) · dA = n

h
m
. (10.43)

A particular solution of this equation when the system contains N vortices is

ω(r, t) =
h
m

N∑
j=1

κ jδ
(2)(r − r j), (10.44)

where κ j = ±1 gives the sign of the vortex at r j. The physical requirement that the
fluid remain curl free is enforced by the density going to zero at each vortex core.
Thus the vorticity is compressed down into a set of infinitesimal points, allowing the
superfluid to remain curl free. Notice that in (10.44) we have constrained the vortices
to each have a only a single unit of circulation. In principle quantum vortices with
any integer circulation are permitted, but in practice vortices with greater than unit
charge are highly unstable.

Exercise 10.6: Feynman rule for a large vortex lattice

The ground state of the GPE in a rotating frame takes the form of a rigidly rotating hexagonal vortex
lattice (Abrikosov lattice, see Figure 10.2.5). In the limit of a large number of vortices such a state
acquires a classical rigid body velocity field. Assuming a constant area per vortex A/N over the lattice:

1. Carry out the circulation integral (10.41) around a region of radius R containing N quantum vortices
with κ j = 1.

2. Equate this result to the integral around a classical rigid body rotating with angular frequency Ω.
Hence deduce Feynman’s rule for the areal density of vortices nv = N/A.
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10.2.6 Superfluid hydrodynamics

A fundamental property of superfluids is revealed when we use transformation
(10.36) to rewrite the GPE (10.24). For the density we obtain (10.37), and for the
superfluid velocity we find

m
∂v(r, t)
∂t

= −∇Veff(r, t), (10.45)

where the effective potential is

Veff(r, t) = 1
2 mv(r, t)2 + V(r, t) + gρ(r, t) −

~2

2m
∇2

√
ρ(r, t)√
ρ(r, t)

. (10.46)

The last term in (10.46) is called the quantum pressure, and is significant near abrupt
changes in the superfluid density, such as in the vicinity of a vortex core. Away from
such structures, the term may be neglected, and the fluid obeys the Euler equation
for inviscid hydrodynamics.

If we consider small perturbations about a stationary state, we can obtain an
equation of motion for long wavelength excitations. Expanding in small fluctuations
about the stationary solution of (10.37) and (10.45) around the homogeneous sta-
tionary state ρ(r, t) = n0 + δρ(r, t), and v(r, t) = δv(r, t), we can show that when the
quantum pressure and potential terms in (10.46) are neglected, valid for a homo-
geneous ground state, the equation of motion for density perturbations is the wave
equation

1
c2

∂2δρ

∂t2 = ∇2δρ (10.47)

with c =
√

gn0/m giving the speed of sound. For trapped systems where the density
varies smoothly the sound waves move in a non-uniform density, giving an effective
speed of sound that is position dependent.

Exercise 10.7: Deriving the Euler equation

Show that the application of (10.36) to (10.24) yields (10.45).

Exercise 10.8: Wave equation for phonons

Prove that long wavelength density fluctuations obey the wave equation (10.47).

Exercise 10.9: Dark soliton
Solitons are an emergent nonlinear excitation with particle-like properties. In this exercise you will

show that the homogeneous 1D GPE

i~
∂ψ

∂t
= −
~2∂2

xψ

2m
+ g|ψ|2ψ, with g = 4π~2a/m (10.48)

has a dark soliton solution.
1. Rewrite the equation in terms of the rescaled time τ = ~t/2m, and λ = 8πa, as

i
∂ψ

∂τ
= −

∂2ψ

∂x2 + λ|ψ|2ψ. (10.49)
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2. Show that for λ > 0, a particular solution is ψ(x, τ) = f (θ)e−i(
√

2bθ+4bτ), with θ = x − vτ, b = v2/8,
and

f (θ) = b
√

2/λ tanh bθ. (10.50)

This is the dark soliton solution propagating with velocity v.

10.3 Bogoliubov theory of the weakly interacting Bose gas

The transition to BEC can be understood within an ideal gas treatment of the
equilibrium states of a fixed total number of particles N. We have seen that the
BEC state can be described by a nonlinear Schrödinger equation. Within such a
classical field treatment of the BEC, we find a description of an inviscid superfluid
that supports quantum vortices, and acoustic waves.

To gain deeper insight into the role of interactions for the many body quantum
system, we consider a system of Bosons interacting via s-wave collisions, in a
homogeneous geometry with periodic boundary conditions. For a highly occupied
BEC subject to weak S -wave interactions, the role of particles outside the condensate
can be understood within a perturbative approach and leads to a picture of the
emergent effects of quantum mechanics in the bulk system.

Figure 10.4: In 1947—1948 Niko-
lay Bogoliubov computed the excita-
tion spectrum for a weakly imperfect
Bose gas and used this as a theoreti-
cal description for superfluidity of He-
lium II. Bogoliubov’s theory exploits
the large occupation of the ground
state by linearizing the full field the-
ory around the condensate wavefunc-
tion.

10.3.1 Momentum representation

For a system of N identical bosons in a volume V with periodic boundary conditions,
recalling (4.66), the Hamiltonian is written in the momentum representation as

H =
∑

k

~2k2

2m
a†kak +

∑
k1, k2, q

Uq a†k1+qa†k2−qak1 ak2 , (10.51)

where [ak, a
†

k′ ] = δk,k′ , and

Uq =
1
V

∫
d3r e−iq·rU(r), (10.52)

for two-body interaction potential U(r).

10.3.2 Bogoliubov’s “Hunting License”

At sufficiently low temperatures a BEC forms, associated with macroscopic occupa-
tion N0 at k = 0,

N0 = 〈a†0a0〉 . N, (10.53)

corresponding to the excited state population

Nex = N − N0 � N. (10.54)

The dominant interactions are self-interactions between condensate particles, or
interactions between condensate and non-condensate particles. Thus we can write
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the Hamiltonian as

H =
∑

k

~2k2

2m
a†kak +

U0

2
a†0a†0a0a0 +

∑
k,0

(U0 + Uk) a†0a0a†kak

+
1
2

∑
k,0

Uk
(
a†ka†

−ka0a0 + a†0a†0aka−k
)

+ O(a3
k) (10.55)

Terms like a†0a†0a0ak,0 vanish due to momentum conservation. For a highly occupied
condensate, we can make the following approximations:

i) The Bololiubov approximation, namely, to replace condensate operators with
c-numbers

a0 →
√

N0, a†0 →
√

N0, (10.56)

equivalent to neglecting the commutator [a0, a
†

0] = 1 relative to the eigenvalue
N0 � 1.

ii) Note that at present the value of N0 is unknown, and will be determined by the
interactions. In the absence of interactions, this occupation approaches N0 = N
at T = 0. As we shall see below, interactions introduce quantum depletion.
However, we can write

N = N0 +
∑
k,0

a†kak, (10.57)

so that, for example

N2
0 = N2 − 2N

∑
k,0

a†kak +
∑

k,0,q,0

a†kaka†qaq

≈ N2 − 2N
∑
k,0

a†kak, (10.58)

where the final expression gives the leading terms in an expansion in powers of
N−1.

iii) Initially, we shall approximate the interactions by the simple replacement
U(r)→ gδ(3)(r), giving Uk → g/V , where g = 4π~2as/m. This approximation
gives an adequate description of long wavelength excitations, but requires
modification for a more complete of ultra-violet behaviour.

Making these replacements, and truncating the summation we arrive at the
quadratic Hamiltonian

HBog =
gN2

2V
+

∑
k,0

(
~2k2

2m
+ gn

)
a†kak +

gn
2

∑
k,0

(
a†ka†

−k + aka−k
)
. (10.59)

This Hamiltonian may be diagonalised via the Bogoliubov transformation. Moti-
vated by the coupling between ±k in the off-diagonal terms of (10.59), we introduce
the ansatz
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ak = ukαk + v∗kα
†

−k, (10.60a)

a†k = u∗kα
†

k + vkα−k, (10.60b)

and impose the condition that the transformation must be canonical:

[αk, α
†

k′ ] = δk,k′ , [αk, αk′ ] = [α†k, α
†

k′ ] = 0. (10.61)

This condition ensures that our new operators describe some kind of particle, the
precise nature of which is to be determined. The transformation is canonical,
provided

|uk|
2 − |vk|

2 = 1, (10.62)

which resembles the hyperbolic identity. The coefficients can thus be parameterised
as uk = cosh(θk), vk = sinh(θk), with θk to be determined by the condition that
(10.59) is reduced to diagonal form by the new operators, namely

gn
(
|uk|

2 + |vk|
2
)

+

(
~2k2

2m
+ gn

)
2ukvk = 0, (10.63)

or, using cosh(2θ) = cosh2(θ) + sinh2(θ) and sinh(2θ) = 2 cosh(θ) sinh(θ),

coth(2θk) = −
~2k2/2m + gn

gn
, (10.64)

giving the explicit forms

uk =

(
~2k2/2m + gn

2ε(k)
+

1
2

)1/2

, vk = −

(
~2k2/2m + gn

2ε(k)
−

1
2

)1/2

, (10.65)

+k

�k

+k

�k

g

Figure 10.5: Excitations of a weakly
interacting Bose gas. For low energy,
long wavelength motion, the excita-
tions are quasiparticles, a collective
phenomena emerging from the inter-
action of ±k plane waves. For high
energy, short wavelength excitations,
the particles are essentially immune to
the interactions, and behave like free
particles.

where we have written the coefficients in terms of the Bogoliubov spectrum

ε(k) =

[
~2k2

2m

(
~2k2

2m
+ 2gn

)]1/2

. (10.66)

After carrying out this diagonalizing transformation, the Hamiltonian reads

HBog = E0 +
∑
k,0

ε(k)α†kαk. (10.67)

10.3.3 Interpretation of the Bogoliubov Hamiltonian

This result has deep physical implications:

i) Quasiparticles.— The spectrum given in (10.66) gives the energy of Bogoliubov
quasiparticles. At this level of approximation the system of interacting particles
is equivalent to a system of independent quasiparticles, with energy spectrum
modified by the interactions. Quasiparticles are thus an emergent collective
phenomena in the many-body system. A more complete treatment of the
Hamiltonian necessarily includes interactions between quasiparticles.
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ii) Phonon regime.— For small momenta we have

ε(k) = ~kc, (10.68)

with the speed of sound given by c =
√

gn/m, as found in (10.47). The
Bogoliubov coefficients become

|uk|
2 →

mc
2~k

, |vk|
2 →

mc
2~k

, (10.69)
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Figure 10.6: Bogoliubov spectrum
(blue), with asymptotics for the low
(green) and high (red) energy regimes,
(10.68) and ε(k) = µ + ~2k2/2m, re-
spectively. Wavenumbers are shown
in units of the healing length ξ =

~/mc.

describing quasiparticles involving equal mixing between particles with mo-
mentum ±k. Note that what we mean by small k can now be understood as the
regime ~2k2/2m � mc2.

iii) Particle regime.— For large momenta ~2k2/2m � mc2, we recover particle-like
behaviour

ε(k) =
~2k2

2m
, (10.70)

and now

|uk|
2 → 1, |vk|

2 → 0. (10.71)

The quasiparticles behave like non-interacting particles, as should be expected
when the particle kinetic energy greatly exceeds the interaction energy. A more
careful treatment yields the high energy asymptotic form ε(k) = µ + ~2k2/2m,
as shown in Figure ii.

iv) Ground state.— The quasiparticle ground state is given by

αk|vac〉 = 0. (10.72)

This can be used together with the inverse of the transformation (10.60):

αk = u∗kak − vka†
−k, (10.73a)

α†k = uka†k − v∗ka−k, (10.73b)

to find the Bogoliubov ground state.

Exercise 10.10: Bogoliubov vacuum

The ground state has a close formal correspondence to the two-mode squeezing Hamiltonian
considered in Section 6.3.

1. Verify that (10.73) is the inverse Bogoliubov transformation.

2. Find a recursion relation for the Bogoliubov ground state in the number state basis for particles,
|nk, n−k〉, and use it to obtain an explicit form for |vac〉. Comment on the role of interactions.

v) Quantum depletion.— In general the role of interactions is to deplete the con-
densate. In thermal equilibrium we can write the population of quasiparticles
as

NQ =
∑
k,0

〈α†kαk〉 =
∑
k,0

1
eβε(k) − 1

, (10.74)
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Figure 10.7: The phonon regime
associated with the linear spectrum
(10.68) is the origin of superfluidity,
a phenomenon first explained by Lev
Landau in 1941. Landau managed to
get released from his incarceration by
the Soviet Secret Service by devel-
oping his theory, making good on a
promise made to his jailers by Pyotr
Kapitsa.

since these excitations are independent, noninteracting, and massless. This
population should not be confused with the population of real particles in
excited states:

Nex =
∑
k,0

〈a†kak〉 =
∑
k,0

〈α†kαk〉|uk|
2 + 〈α†kαk〉|vk|

2 + |vk|
2, (10.75)

from which we can pass to the continuum limit in volume V , the write the
depletion of the condensate as

N0 = N − Nex = N −
V

(2π~)3

∫
d3k

[
|vk|

2 +
|uk|

2 + |vk|
2

eβε(k) − 1

]
(10.76)

from which we see that even at T = 0 there is a finite quantum depletion of the
condensate.

10.4 Degenerate Fermi Gases

At sufficiently low temperatures, the population of a Fermi system will fill up the
all of the states to the Fermi energy. Soon after the realisation of BEC, degenerate
Fermi gases were achieved [5]. The cooling process is further complicated by the
inhibition of S -wave scattering (Pauli-blocking), necessitating the use of buffer gas
cooling to reach degeneracy.

As shown in Figure 10.8 the quantum degeneracy stops the Fermi gas from
shrinking below a minimum size determined by the Pauli exclusion principle. This
Fermi pressure is the same force that prevents white dwarf and neutron stars from
collapsing to densities sufficient to form black holes [6].
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Figure 10.8: Demonstration of Fermi pressure for degenerate quantum gases. Comparison
between Bosonic 6Li and Fermionic 7Li, shows the distinctive nature of quantum statistics.
The size of the Bose gas shrinks as the temperature is reduced by evaporative cooling.
The Fermionic cloud cannot shrink below a certain size determined by the Pauli exclusion
principle. Figure adapted from [6]. The schematic bottom left shows the counting statistics
of spin-1/2 Fermions. In the Fermionic cloud shown on the right the spin-polarization of
Fermions limits the populations to one particle per energy eigenstate of the trap.
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