
MOD 412 cf 19/08/2014

Department of Physics
Computational Inference

Assignment 1 (due 5 Sept by close of play)

1. Consider the joint pdf π (x, y, θ) over x, y, and θ. Using Bayes’ rule, product factoring,
etc, establish the following identities between the pdfs over various conditional and
marginal distributions:

(a) π (θ|y) =
π (x, θ|y)

π (x|θ, y)
(This is useful because the RHS may be evaluated at any x

for which denominator is non-zero.)

(b) π (x, θ|y) = π (x|θ, y) π (θ|y), i.e., we can condition the usual product factoring.

(c) π (θ|y) =
π (x, y|θ) π (θ)

π (x|θ, y) π (y)
(Again, RHS may be evaluated at any x for which de-

nominator is non-zero. Useful when conditioning on θ is a GMRF.)

2. MatLab code to carry out inference by MCMC for the diffusion coefficient can be found
on the module’s web page https://coursesupport.physics.otago.ac.nz/wiki/pmwiki.php/Module412/HomePage

(a) Run that code (or python equivalent) and produce a plot of the posterior pdf over
D conditioned on the (fake) measured data. Give a best value, and measure of
uncertainty.

(b) Plot the integrated autocorrelation time versus acceptance rate for this MCMC,
by varying the proposal window (for fixed fake data).

(c) Modify the formulation and code to allow the final time Tmax to be uncertain,
uniformly distributed in the range [1.9, 2.1]. In particular, modify the code to
perform joint inference over D and the (nuisance parameter) Tmax, and plot the
posterior pdf over D conditioned on the (fake) measured data. Give a best value,
and measure of uncertainty. How does the uncertainty compare to the result when
Tmax was treated as certain?

3. Assume the x1, x2, . . . are a set of samples drawn from some distribution π (x) (perhaps
by an MCMC) and y = g (x) is some function of x, with corresponding pdf π (y) (given
by the change of variable formula).

(a) Show that g (x1) , g (x2) , · · · are a set of samples distributed as π (y).

(b) Use this property to plot distributions over the parameters x and
√
x in the ‘no

such thing as best estimate’ example from Lecture 1. In particular, set x∗ = 1
and generate synthetic data

di ∼ N

(√
x∗
i
, σ2

)
i = 1, 2, . . . N

for some suitably large N and suitable σ2. Then write an MCMC to draw samples
from π (x| {di}), and plot a histogram of this distribution. Plot a histogram of
π (
√
x| {di}). Report means, variances, etc. Repeat this for each of the prior

distributions π(x) ∝ 1 (i.e. perform inference using the normalized likelihood)
and π(x) ∝ 1/x (the Jeffrey’s prior for scale parameter).
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