- 1. (a) For a system with Hamiltonian $H = H_0 + H_I$ where H_I represents the interaction, give the equations of motion for states and operators in the
 - (i) Schrödinger picture;
 - (ii) Heisenberg picture;
 - (iii) Interaction picture.
 - (b) An atom in an optical cavity is interacting on resonance with a single cavity mode of the Electromagnetic field. The atom-light system is described by the Jaynes-Cummings Hamiltonian

$$H = \hbar\Omega \left(a^{\dagger}a + \frac{1}{2}\sigma_z \right) + \hbar\kappa \left(a\sigma_+ + a^{\dagger}\sigma_- \right) \equiv H_0 + H_{Int},$$

where the photon operators have Bose commutation relations $[a, a^{\dagger}] = 1$, and the twolevel atom is described by the Pauli matrices, and $\sigma_{\pm} = \frac{1}{2}(\sigma_x \pm i\sigma_y)$ are raising and lowering operators.

- (i) Show that $[H_0, H_{Int}] = 0$, and thus show that the interaction Hamiltonian in the interaction picture is unchanged: $H_{Int,I} = \hbar \kappa (a\sigma_+ + a^{\dagger}\sigma_-)$.
- (ii) Working in the interaction picture, consider an initial state $|\psi, 0\rangle = |e, n\rangle \equiv |e\rangle \otimes |n\rangle$, where the atom is in the excited state $|e\rangle$ and the cavity mode is in the number state $|n\rangle$. Expand the quantum state as

$$|\psi, t\rangle = \lambda(t)|e, n\rangle + \mu(t)|g, n+1\rangle,$$

and find and solve the equations of motion for $\lambda(t), \mu(t)$, and thus find $|\psi, t\rangle$.

- (iii) Find the probability that the system is in the state $|e, n\rangle$ at time *t*.
- (c) Consider now the situation where the EM mode is initially in a coherent state

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0} \frac{\alpha^n}{\sqrt{n!}} |n\rangle,$$

so that $|\psi, 0\rangle = |e, \alpha\rangle$.

- (i) Write down an expansion of the state ket in terms of the number state solutions found above.
- (ii) Give an expression, in terms of the density matrix of the total system $\rho(t) = |\psi, t\rangle\langle\psi, t|$, for the probability $p_e(t)$ that the atom is in the excited state at time t, irrespective of the EM mode state. Evaluate this expression to find $p_e(t)$, and write your answer in terms of the mean photon number for $|\alpha\rangle$.
- (iii) Express $p_e(t)$ in terms of a time independent term and a sum of oscillating terms. Interpret your result.