- 2. (a) For a system with Hamiltonian $\hat{H} = \hat{H}_0 + \hat{H}_{Int}$ where \hat{H}_{Int} represents the interaction, briefly comment on the evolution of quantum states and operators in the
 - (i) Schrödinger picture;
 - (ii) Heisenberg picture;
 - (iii) Interaction picture with respect to \hat{H}_0 .
 - (b) Given a time-dependent Hamiltonian $\hat{H}(t)$, and time-independent operator \hat{X}_S in the Schrödinger picture, show that the formal solution

$$\hat{X}_{H}(t) = \mathbf{T} \left[\exp\left(\frac{i}{\hbar} \int_{0}^{t} \hat{H}(t') dt'\right) \right] \hat{X}_{S} \mathbf{T} \left[\exp\left(-\frac{i}{\hbar} \int_{0}^{t} \hat{H}(t') dt'\right) \right]$$

satisfies the Heisenberg equation of motion for $\hat{X}_{H}(t)$, where **T** time-orders operators into chronological order.

(c) A single mode of the electromagnetic field evolves according to the Schrödinger picture Hamiltonian

$$H = \hbar \omega \hat{a}^{\dagger} \hat{a} + i\hbar g(t)(\hat{a}^{\dagger} - \hat{a}) \tag{1}$$

where \hat{a}^{\dagger} , \hat{a} are creation and annihilation operators for the mode with $[\hat{a}, \hat{a}^{\dagger}] = 1$, and g(t) is a real-valued function of time.

(i) Give the Heisenberg equations of motion for the creation and destruction operators. Solve the equation of motion for the destruction operator $\hat{a}(t)$, and show explicitly that the commutation relations are preserved, i.e., the solutions satisfy

$$[\hat{a}(t), \hat{a}^{\dagger}(t)] = 1.$$

(ii) If the state of the system is the vacuum state $|0\rangle$ of the *initial* creation and destruction operators (i.e., if $\hat{a}(0)|0\rangle = 0$) show that this state satisfies

$$\hat{a}(t)|0\rangle = \beta(t)|0\rangle$$

where

$$\beta(t) = \int_0^t dt' g(t') e^{-i\omega(t-t')}.$$

(iii) Using the relationship between the Schrödinger and Heisenberg pictures, show that in the Schrödinger picture, the quantum state at time *t* is the coherent state $|\beta(t)\rangle$; where the coherent state $|\alpha\rangle$ is defined as the eigenstate of the annihiliation operator:

$$\hat{a}|\alpha\rangle = \alpha|\alpha\rangle.$$

(iv) Give an example of a physical system that may be described by the Hamiltonian (1).

TURN OVER