3. (a) Briefly outline the use in scattering theory of
(i) The Born Approximation;
(ii) The method of partial waves;
(iii) The Lippmann-Schwinger equation.

Address the physical basis of the methods and their applicability with no more than a few sentences for each.
(b) Describe the components of the wavefunction

$$
\psi(\mathbf{x}) \sim e^{i k z}+f(\theta, \phi) \frac{e^{i k r}}{r}
$$

and the physical justification for interpreting it as the scattering solution of the time independent Schrödinger equation.
(c) For a finite ranged central scattering potential, the scattering problem is considerably simplified. The wavefunction outside the potential can be expanded as

$$
\begin{aligned}
\psi(\mathbf{x}) & =\sum_{l} \psi_{l}(r) P_{l}(\cos \theta) \\
\psi_{l}(r) & =A_{l}\left[\cos \delta_{l} j_{l}(k r)-\sin \delta_{l} n_{l}(k r)\right]
\end{aligned}
$$

where j_{l} and n_{l} are spherical Bessel and Neumann functions, and P_{l} are Legendre polynomials. Give a brief justification for this expansion.
(d) Consider the hard sphere potential

$$
V(r)=\left\{\begin{array}{cc}
\infty, & r<a \\
0, & r \geq a
\end{array}\right.
$$

(i) Use the above expansion and the boundary condition at $r=a$ to show that for any $l, \cot \delta_{l}=n_{l}(k a) / j_{l}(k a)$.
(ii) The scattering length a_{s} and effective range r_{0} are given by the low- k expansion

$$
k \cot \delta_{0} \approx-\frac{1}{a_{s}}+\frac{1}{2} r_{0} k^{2}+O\left(k^{4}\right)
$$

Using this expansion, find the scattering length and effective range for the hard sphere potential.

